## CITY OF RYE 1051 BOSTON POST ROAD RYE, NY 10580 AGENDA

## REGULAR MEETING OF THE CITY COUNCIL COUNCIL CHAMBERS, CITY HALL Wednesday, October 23, 2024 6:30 p.m.

- 1. Pledge of Allegiance.
- 2. Roll Call.
- 3. Draft unapproved minutes of the Regular Meeting of the City Council held October 9, 2024.
- 4. Members of the public may be heard on matters for Council consideration that do not appear on the agenda.
- 5. Report of the City Manager.
- 6. Presentation of project testing results and award bid for Nursery Field turf project.
- 7. Award bid for Theodore Fremd wall project (Contract # 2024-03).
- 8. Presentation to the City Council on the comprehensive plan process.
- 9. Statement by the Rye City Council on gun safety in cooperation with the Rye School District.
- 10. Resolution designating the days and times of regular meetings of the City Council for 2025, setting January 8, 2025, as the first regular meeting.
- 11. Old Business/New Business.
- 12. Adjournment.

The next regular meeting of the City Council will be held on Wednesday, November 6, 2024, at 5:45 p.m. The Meeting will begin in the Square House before moving to City Hall at approximately 6:30 p.m.

\*\* City Council meetings are available live on Cablevision Channel 75, Verizon Channel 39, and on the City Website, indexed by Agenda item, at www.ryeny.gov under "RyeTV Live".

**UNAPPROVED MINUTES** of the Regular Meeting of the City Council of the City of Rye held in City Hall on October 9, 2024, at 6:30 P.M.

PRESENT:

JOSH COHN, Mayor KEITH CUNNINGHAM SARA GODDARD BILL HENDERSON JAMIE JENSEN JOSH NATHAN JULIE SOUZA Councilmembers

ABSENT: NONE

### ALSO ATTENDING:

GREG USRY, CITY MANAGER KRISTEN WILSON, CORPORATION COUNSEL BRIAN SHEA, ASSISTANT CITY MANAGER CHRISTOPHER CORREALE, GENERAL MANAGER RYE GOLF CLUB RODRIGO PAULINO, HARBOR MASTER

The Council convened in a public meeting at 6:36 P.M. The meeting was streamed live at <u>www.ryeny.gov</u> for public viewing.

## 1. <u>Pledge of Allegiance.</u>

Mayor Cohn led the Pledge of Allegiance.

## 2. <u>Roll Call</u>.

The City Clerk called the roll and there was a quorum.

3. Draft unapproved minutes of the Regular Meeting of the City Council held September 18, 2024.

On motion by Councilperson Souza, seconded by Councilperson Jensen, and unanimously carried, it was

**RESOLVED** to approve the drafted minutes of the Regular Meeting of the City Council held September 18, 2024.

4. Additional item: Resolution on Playland Tax Issue

On motion by Councilperson Souza, seconded by Councilperson Cunningham:

**WHEREAS**, the County commenced an Article 78 against the City on September 10, 2024, seeking approximately \$14 MM in tax payments from the City; and

**WHEREAS**, the County and Standard will be filing an Article 7 Proceeding with respect to the taxability of the Playland parcel on the 2024 assessment roll; and

**WHEREAS**, all parties wish to resolve both matters so as to not impact the City, School District and County budgets; and

**WHEREAS**, consistent with the interim settlement discussions had with the Council, Corporation Counsel will work with the County Attorney's office to draft a settlement agreement to resolve the Article 78 proceeding and also a consent judgment to be "So Ordered" by the Judge to resolve the Article 7 proceeding(s).

**NOW, THEREFORE, BE IT RESOLVED**, that the City Council authorizes the Corporation Counsel to settle both litigation matters consistent with the above terms.

ROLL CALL AYES: Councilpersons Cunningham, Goddard, Henderson, Jensen, Nathan, Souza, Mayor Cohn NAYS: None ABSENT: None

5. <u>Members of the public may be heard on matters for Council consideration that do not appear on the agenda.</u>

The following members of the public spoke:

- Jenifer Kelley, 5 Wilson Drive, regarding Playland on the tax roll
- Stephen Bear, 22 Locust Ave. 1, regarding Car Park 1
- 6. <u>Report of the City Manager.</u>

City Manager, Greg Usry, updated the City Council on various items.

7. <u>Consideration of a request from SOUL RYEDERS for the use of City streets on Sunday</u>, May 18, 2025, from 7:30 am to 11:30 am for a half marathon/5k fundraising event.

On motion by Councilperson Souza, seconded by Mayor Cohn, and unanimously carried it was:

**RESOLVED** to approve the request from SOUL RYEDERS for the use of City streets on Sunday, May 18, 2025, from 7:30 am to 11:30 am for a half marathon/5k fundraising event.

8. <u>Approve appointments to the Boat Basin Commission.</u>

On motion by Councilperson Nathan, seconded by Councilperson Jensen and unanimously carried it was:

**RESOLVED** to approve the latest appointment of Joe Pecora & Scott Beechert to the Boat Basin Commission for a 3-year term.

9. <u>Presentation and resolution to establish the 2025 budgeted Fees and Charges for the Boat</u> <u>Basin.</u>

On motion by Councilperson Souza, seconded by Councilperson Goddard:

**WHEREAS** the City of Rye owns and operates the DePauw Municipal Boat Basin in Milton Harbor; and

**WHEREAS**, pursuant to the Charter of the City of Rye the City Council has the authority to adopt new fees and charges; and

WHEREAS, after an analysis of the associated fees and charges for the Boat Basin, it has been determined that an increase in those fees and charges is necessary to offset costs; and

WHEREAS, a list of those fees and charges has been furnished to the City Council and attached herein; and

**WHEREAS**, the Boat Basin Commission approved these fees and charges on July 16, 2024;

**NOW, THEREFORE, BE IT RESOLVED**, that the City Council hereby adopts the proposed 2025 fees and charges as detailed herein.

ROLL CALL AYES: Councilpersons Cunningham, Goddard, Henderson, Jensen, Nathan, Souza, Mayor Cohn NAYS: None ABSENT: None

10. <u>Presentation and resolution to establish the 2025 budgeted Fees and Charges for the Rye</u> <u>Golf Club.</u>

On motion by Councilperson Souza, seconded by Mayor Cohn:

WHEREAS, the City of Rye owns and operates the municipal Rye Golf Club; and

**WHEREAS**, pursuant to the Charter of the City of Rye the City Council has the authority to adopt new fees and charges; and

**WHEREAS**, after an analysis of the associated fees and charges for the Golf Club, it has been determined that an increase in certain fees and charges is necessary to offset costs; and

**WHEREAS**, a list of those fees and charges has been furnished to the City Council and attached herein; and

**WHEREAS**, the Rye Golf Club Commission approved these fees and charges on August 28, 2024;

**NOW, THEREFORE, BE IT RESOLVED**, that the City Council hereby adopts the Commission-approved 2025 fees and charges as detailed herein.

<u>ROLL CALL</u> AYES: Councilpersons Cunningham, Goddard, Henderson, Jensen, Nathan, Souza, Mayor Cohn NAYS: None ABSENT: None

11. <u>Resolution authorizing the City Manager to execute an agreement with Connecticut</u> <u>Communications and Ring Central to provide for service and installation of a new City</u> <u>office telephone system.</u>

On motion by Councilperson Souza, seconded by Councilperson Henderson, and unanimously carried, it was:

**RESOLVED** to authorize the City Manager to execute agreements with Connecticut Communications and Ring Central to provide for a new City office phone system.

12. Resolution amending the FY 2024 budget by increasing the police patrol equipment expense line by \$120,000 and the law enforcement technology grant revenue line by \$120,000, due to the City receiving a \$120,000 grant award from the New York State Division of Criminal Justice's Law Enforcement Technology (LETECH) program.

On motion by Councilperson Henderson, seconded by Councilperson Souza:

AUTHORIZATION TO AMEND THE 2024 CITY OF RYE ADOPTED BUDGET BY INCREASING THE POLICE PATROL EQUIPMENT EXPENSE LINE AND LAW ENFORCEMENT TECHOLOGY GRANT REVENUE LINE BY \$120,000.

**WHEREAS**, the City of Rye received a \$120,000 grant award from the New York State Division of Criminal Justice's Law Enforcement Technology (LETECH) program and

**WHEREAS**, the City of Rye's 2024 General Fund Budgeted appropriations were \$50,934,981 and General Fund Budgeted revenues were \$47,545,481;

**NOW, THEREFORE, BE IT RESOLVED**, that the City Council agrees to amend the 2024 City of Rye Adopted Budget, by increasing General Fund appropriations and General Fund revenues by \$120,000 each, in recognition of this unbudgeted source of funds.

### ROLL CALL

AYES: Councilpersons Cunningham, Goddard, Henderson, Jensen, Nathan, Souza, Mayor Cohn NAYS: None ABSENT: None

## 13. CONSENT AGENDA

a. <u>Consideration of a request by the American Legion Post 128 to conduct its usual</u> <u>Veterans Day observance on the Village Green on Monday, November 11, 2024,</u> <u>from 10:30 a.m. to 11:30 a.m. In case of rain, the American Legion Post 128 requests</u> <u>the use of City Hall on that date and time.</u>

On motion by Councilperson Souza, seconded by Councilperson Henderson, and unanimously carried, it was:

**RESOLVED** to approve a request by the American Legion Post 128 to conduct its usual Veterans Day observance on the Village Green on Monday, November 11, 2024, from 10:30 a.m. to 11:30 a.m.

## 14. Old Business/New Business.

The Mayor read two statements: one regarding the Council's stance against hatred, the second offering thoughts and prayers to the residents of Florida in the face of Hurricane Milton as well as to those who suffered as a result of Hurricane Helene.

## 15. Adjournment

On motion of Councilperson Souza, seconded by Mayor Cohn, and with the Council in favor, the meeting was adjourned at 7:35 P.M.

Respectfully submitted,

Noga Ruttenberg City Clerk



# **CITY COUNCIL AGENDA**

DEPT.: City Planner

CONTACT: Christian Miller, City Planner

**AGENDA ITEM:** Presentation of project testing results and award bid for Nursery Field turf project.

FOR THE MEETING OF:

October 23, 2024

**RECOMMENDATION:** That the Council consider the presentation and resolution.

| IMPACT: | 🗌 Environmental 🖂 Fiscal 🗌 Neighborhood 🗌 Other: |
|---------|--------------------------------------------------|
| l       |                                                  |
|         |                                                  |

BACKGROUND: See attached memo and resolution.



## **CITY OF RYE**

To: Rye City Council

- From: Greg Usry, City Manager Christian K. Miler, City Planner Ryan X. Coyne, City Engineer
- CC: Kristen Wilson, Esq., Corporation Counsel
- **Date**: October 15, 2024
- Re: Nursery Field Bid and Test Results

As directed in the City Council's May 1, 2024, resolution the City's consultants completed the final design and bid specifications for the construction of a turf field at Nursery Field. A request for bids was circulated and four responsive bids were received by the August 16, 2024 deadline.

During the bidding process it was determined that the City needed to test the existing soil at Nursery Field in order to confirm potential contaminants that would potentially impact soil disposal costs. The soil tests revealed the presence of contaminants in the existing soil, which required the City to issue a bid addendum requesting bidders to submit a cost to dispose of unsuitable material to a licensed facility. Bid addendums were submitted but only three of the four bidders by the October 2, 2024 deadline. The three bids ranged from \$2,039,835 to \$2,182,556.

This memorandum provides a detailed discussion of the PFAS and total fluorine test process and a summary of the results. Also discussed are the test results from the existing soil at Nursery Field and the findings of the environmental consultant regarding the existing use of the field and the potential regulatory considerations for the construction of the proposed turf field. This memorandum identifies the enhancement program that will be implemented based on Nursery Field neighbor feedback. Finally, this memorandum presents the bid results and a discussion of the bid alternatives.

## PFAS and Total Fluorine Testing Process and Independent Lab Selection

The City Council's May 1, 2024 resolution sets forth requirements that the turf must be tested for total fluorine, targeted testing for PFAS/PFOA and that such components do not require a warning label under California's Proposition 65<sup>3</sup>. To accomplish this, prior to proposal submission, each bidder was required to submit a sample of their proposed turf product (including grass blades and backing) to an independent testing laboratory retained by the City. The infill and shock pad specified in the field design were required to be submitted for lab testing.

In accordance with the City Council resolution, the City contacted Galbraith Labs in TN, however they do not preform targeted PFAS testing. Staff contacted multiple accredited laboratories and contracted with Pace Analytical as the preferred independent tester for the City. Pace performed the total fluorine test and the newest EPA accepted targeted PFAS test (known as US EPA Method 1633), which was finalized on January 31, 2024. The 1633 Method tests for 40 PFAS constituents, including the three PFAS listed on California Proposition 65.

## **PFAS and Total Fluorine Test Results**

All four bidders submitted their turf products to Pace Labs on or before August 16, 2024. Final test results were completed on September 26, 2024. Multiple bidders submitted different turf samples that did "not detect (i.e. "ND")" any of the 40 PFAS parameters tested by the 1633 targeted testing method.

DeRosa Sports Construction, Inc. was the lowest responsive bidder at \$2,039,835, with ND for all PFAS parameters and total fluorine of 230 mg/Kg<sup>4</sup>. It is noted that a total fluorine test as required by the City Council in its May 1 resolution includes both <u>organic</u> and <u>inorganic</u> fluorine. It is our understanding that only organic fluorine is an indicator of the potential presence of the one of an estimated 10,000 PFAS. Inorganic fluorine is not.

The shockpad brand specified to be used by all bidders also had ND for all 40 PFAS parameters tested by the 1633 targeted testing method and had a total fluorine of 38 mg/Kg.

<sup>&</sup>lt;sup>3</sup> WHEREAS, on December 6, 2023, the City Council passed a resolution to move forward with installing a synthetic turf field at Nursery Field that meets all of the criteria outlined in the December 6th Resolution, including (i) the Council's negative declaration, (ii) City Planning Commission's November 21,2023 Advisory LWRP Coastal Consistency and Wetland Review, and (iii) that all components (grass blades, shock pad, and infill) are tested by an independent third-party lab retained by the City (for example Galbraith Laboratories, Inc. in TN or similar quality lab) to identify total fluorine content and such lab shall conduct appropriate targeted testing for PFAS/PFOA content and verify that such components require no warning labels under California Proposition 65 standards, (the "Nursery Field Project" or "Project");

<sup>&</sup>lt;sup>4</sup> One bidder's results were deemed "not responsive" since the turf sample did not adhere to the chain of custody requirements specified in the bid documents. Their total bid was \$2,063,000. The second lowest responsive bidder had a "ND" for all 40 PFAS parameters but a total fluorine of 4,800 mg/Kg and a bid of \$2,182,556.

The infill brand specified by the City Council, which is a natural product consisting of ground pine trees from the state of Georgia. That product had a total fluorine result of 5.7 mg/Kg, but the 1633 test detected one PFAS parameter (NFDHA) at 24.6 ug/Kg in the sample the vendor provided to the City's independent lab. Staff has confirmed with the testing lab that this PFAS is not one of the regulated constituents under California Proposition 65 and is not one of the six PFAS banned in drinking water by the EPA. The lab stated that this product is used in firefighting foam. Attached hereto is a response from the vendor regarding the presence of NFDHA in its sample. Also attached are the test results for the proposed turf system, shockpad and infill.

## Nursery Field Soil Testing

The bid specifications require the removal of the top six inches of soil from Nursery Field since topsoil is not structurally suitable for the construction of a turf field. During the bidding process vendors inquired as to whether the existing soil has been tested, since disposal costs could vary depending on the soil characteristics. To answer that question, GZA Geoenvironmental was retained to take soil samples and prepare a waste disposal characterization report. Tenen Environmental was engaged to provide guidance on the GZA findings (both reports are attached hereto).

## GZA Soil Samples and Waste Disposal Characterization Report

GZA conducted soil samples at different depths and locations within the field footprint based on the design of the proposed field. The GZA waste characterization report found that within the topsoil (i.e. a depth of 0.0 to 0.5 feet) had elevated levels of pesticides (specifically DDT and its breakdown product DDE) that exceed New York State Unrestricted Use criteria and will require disposal to a licensed disposal facility. The use of DDT has been banned in Rye since 1969 and federally banned since 1972. As recommended by GZA a bid addendum was issued requesting that each bidder provide a cost for the topsoil disposal based on the findings of the GZA report.

At greater depths from 0.5 feet to 1.5 feet soil samples were found to contain DDT, DDE, DDD and metals (including arsenic, lead, nickel and zinc) that exceed New York State Unrestricted Use criteria. Material at this depth is not intended to be removed from the site. GZA's report stated that based on TCLP metal analysis the solid waste "...is considered non-hazardous."

## Tenen Environmental Sample Analysis

To further our understanding of GZA's findings, staff engaged Tenen Environmental to provide guidance on what actions should be taken with respect

to the use of the existing field and whether there are any regulatory considerations with respect to the construction of the proposed turf field.

Tenen found that none of the concentrations detected in the soil samples require reporting to any regulatory agency. The existing concentrations of DDT and DDE in the existing topsoil are considered acceptable by NYSDEC standards for the existing active recreational use of the site.

Tenen's analysis addresses the arsenic found at depths between 0.5-1.5 feet below the surface. The arsenic concentrations at Nursery are above the Restricted-Residential Soil Cleanup Objectives (SCOs). Typically, NYSDEC requires a two-foot soil cap or an engineered cap to prevent contact with the underlying contaminated soil. Nursery does not currently meet that standard.

Tenen reviewed the turf plans and details and the proposed field cross-section consisting of a geotextile fabric, an eight-inch graded stone layer, shockpad and turf. Tenen confirmed that this proposed design will allow for the reuse of the remaining material under the field and would provide a sufficient engineered cap to prevent contact with the underlying soil. Currently, Nursery provides no more than six inches of Restricted-Use classified soil from existing arsenic concentrations that are deemed not appropriate for active recreational use.

## **Bid Results**

On or before August 16, 2024, the City received four proposals responsive to the bid that was circulated to prospective bidders on July 29, 2024. One bidder withdrew after not submitting a bid for the topsoil disposal and a second bidder was deemed not responsive for not complying with the chain of custody requirements for the turf sample testing. The table below provides a detailed breakdown of the two bidders by bid specification.

The bid also included two alternates for additional project options that the City Council can choose to add to the base bid at their discretion. Alternate No. 1 is for an infield synthetic turf containment system. This system is designed to collect potential migrating infill and grass blades generated from pedestrians and equipment exiting the field. It is located at field access points and includes steel grates over a below grade concrete structure. Alternate No. 2 is a weighted windscreen that is attached to the perimeter fencing adjacent to the wetland area as an additional measure to prevent potential infill and grass blade migration toward the wetland.

|                      |                                            | DeRosa Sports<br>Construction Inc. | Bidder 2       |  |
|----------------------|--------------------------------------------|------------------------------------|----------------|--|
| Spec Section         | Description                                |                                    |                |  |
| DIVISION 1           |                                            |                                    |                |  |
| General Conditions & | Miscellaneous Conditions                   | \$17 935 00                        | \$45,000,00    |  |
| Insurance            |                                            | \$12,000,00                        | \$10,000,00    |  |
| Temporary Facilities |                                            | \$14,000,00                        | \$1,800.00     |  |
| Project Closeout     |                                            | \$5,000,00                         | \$1,500.00     |  |
| Record Documents     |                                            | \$5,000,00                         | \$250.00       |  |
| Warranties           |                                            | \$5,000.00                         | \$2,500.00     |  |
| DIVISION 2           |                                            |                                    |                |  |
| Section 02 21 13     | Site Survey                                | \$7,000.00                         | \$12,000.00    |  |
| Section 02 81 00     | Off-site Topsoil Disposal                  | \$64,000.00                        | \$65,000.00    |  |
| Section 31 05 16     | Aggregates for Earthwork                   | \$235.000.00                       | \$268.000.00   |  |
| Section 31 11 00     | Clearing and Grubbing                      | \$30.000.00                        | \$28.000.00    |  |
| Section 31 20 00     | Earth Moving                               | \$106,000.00                       | \$155,849.86   |  |
| Section 31 23 16     | Material Excavation & On-Site Staging      | \$20,700.00                        | \$95,000.00    |  |
| Section 31 23 33     | Trenching and Backfilling                  | \$66,000.00                        | \$25,000.00    |  |
| Section 31 25 00     | Erosion and Sediment Control               | \$14,000.00                        | \$52,000.00    |  |
| Section 31 32 19.16  | Geotextile Stabilization Fabric            | \$3,200.00                         | \$6,500.00     |  |
| Section 31 32 19.23  | Geotextile Filter Fabric                   | \$23,000.00                        | \$16,200.00    |  |
| Section 32 01 00     | Restoration of Surfaces                    |                                    |                |  |
| Section 32 13 13     | Cement Concrete Paving                     | \$16,000.00                        | \$25,000.00    |  |
| Section 32 16 13.13  | Cast-In-Place Concrete Curb                | \$169,000.00                       | \$95,000.00    |  |
| Section 32 18 23.29  | Infilled Synthetic Turf System             | \$690,000.00                       | \$720,000.00   |  |
| Section 32 31 00     | Chain Link Fence and Athletic Ball Netting | \$180,000.00                       | \$150,000.00   |  |
| Section 32 93 13     | Topsoil and Seeding                        | \$35,000.00                        | \$5,000.00     |  |
| Section 33 31 70     | HDPE Piping                                | \$98,000.00                        | \$225,000.00   |  |
|                      | BASE BID TOTAL                             | \$1,815,835.00                     | \$2,004,599.86 |  |
|                      | DELTA                                      | \$0.00                             | \$188,764.86   |  |
| ALTERNATE NO. 1 -    | Infilled Synthetic Turf Containment System | \$56,000.00                        | \$68,689.60    |  |
| ALTERNATE NO. 2 -    | Weighted Windscreen                        | \$14,000.00                        | \$15,174.50    |  |
| ALTERNATE NO. 3 -    | Soil Disposal                              | \$154,000.00                       | \$94,092.00    |  |
|                      | Base Bid + Alt 1                           | \$1,871,835.00                     | \$2,073,289.46 |  |
|                      | Base Bid + Alt 1 + Alt 2                   | \$1,885,835.00                     | \$2,088,463.96 |  |
|                      | Base Bid + Alt 1 + Alt 2 + Alt 3           | \$2,039,835.00                     | \$2,182,555.96 |  |

## TABLE 1 Nursery Field Turf Bid Results

## **Enhancement Program**

On July 24 staff mailed approximately 150 letters requesting input on the implementation of certain potential enhancements as outlined in the City Council's May 1, 2024, resolution related to the construction of an artificial athletic turf field at Rye Nursery<sup>5</sup>. In addition to

<sup>&</sup>lt;sup>5</sup> More specifically, paragraph 8 of the Council resolution states, "The City Manager will work with citizens from the neighborhood surrounding Nursery Field to address concerns regarding neighborhood aesthetics, beyond those called for as part of the Project planning and LWRP process, e.g., the planting of additional trees and shrubbery, additional non-field design elements, and safety and noise mitigation, etc. To that end, the City will spend an amount to not exceed \$250,000 on such additional enhancements. Please visit <a href="https://www.ryeny.gov/services/projects-and-information/nursery-field-project-information">https://www.ryeny.gov/services/projects-and-information/nursery-field-project-information</a> for a copy of the full City Council resolution and all Nursery Field-related documents.

three telephone conversations with residents, the City received fourteen responses, which have been posted to the City website at <u>www.ryeny.gov/services/projects-and-information/nursery-field-project-information</u>.

After compiling neighbor feedback, a second letter was circulated on September 18 noting that the following enhancements would be implemented:

- Existing deadfall (i.e. dead trees and large dead plant material) within the wooded slope area on the eastern property line will be removed.
- Evergreen shrubs and trees will be installed near the base of the slope on the eastern property line to intercept neighbor views of the proposed field. The existing mature vegetation in this area consists almost exclusively of invasive Norway Maple and Black Locust trees, which provides very dense shade. Some trimming of existing trees may be required to provide sufficient sunlight for new plant material.
- A new crosswalk with pedestrian-activated beacons will be installed on Milton Road at the Nursery Field parking lot access. This would be consistent with similar crosswalk measures implemented throughout the City.
- Additional plant material will be provided to improve screening of the existing comfort station.

## **Council Action**

If the City Council decides to advance the project it is recommended that they select the low bidder, **DeRosa Sports Construction, Inc.**, in the amount of \$2,039,835, which includes the base bid and all alternates. This amount does not include design and consultant costs, construction administration and inspection services and construction contingency.

x:\05-city owned property\nursery field 421 milton road\cc memo re nursery bid and testing results.docx



GZN

Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

117 Canal Road South Bound Brook, NJ T: 732.356.3400 www.gza.com September 12, 2024 File No. 12.0077665.01

Mr. Ryan X. Coyne City of Rye 1051 Boston Post Road Rye, New York 10580

RE: Waste Disposal Soil Characterization Proposed Turf Field 421 Milton Road Tax ID 146-19-5-7 Rye, Westchester County, New York

Dear Mr. Coyne:

This letter provides the results of the waste characterization sampling and environmental laboratory testing facilitated by GZA GeoEnvironmental, Inc. (GZA) on behalf of the City of Rye for the Nursery Fields proposed conversion of the current grass field to an artificial turf field as indicated to GZA by the City of Rye. Nursery Fields is located at 421 Milton Road, in Rye, Westchester County, New York (the "Site"). The waste characterization sampling was performed in general accordance with our Change Order email, dated August 7, 2024. The approximate location of the Site is shown on Figure 1, Regional Location Map. The waste soil characterization sample locations are shown on Figure 2, Waste Characterization Sample Locations. The findings of our study are subject to the Limitations presented in Appendix I.

#### Discussion

On August 7, 2024, UDig NY was called in for the Site. UDig NY responded on August 9, 2024 and indicated that no underground utilities are present. Following the UDig NY notification, on August 12, 2024, GZA collected samples of the in-situ soils from the proposed artificial turf field excavation areas. Subgrade elevation of the artificial turf field was reported by City of Rye representatives to be at approximately +12 feet above mean sea level and cut depths range from approximate 1-foot to 2.5 feet below the existing ground surface (bgs). GZA understands that soils within approximately 0-6" bgs consist primarily of loam and organic materials that will be disposed of offsite. Other cut soil materials within approximately 6" to 2.5 feet bgs will be reused onsite. A copy of a plan showing the current elevations is provided as Figure 2.

GZA advanced eleven hand auger soil borings and collected three five-point composite samples (WC-1 through WC-3) from these soil borings as shown on Figure 2. These soil samples were submitted for target compound list/target analyte list plus 30 tentatively identified compounds (TCL/TAL+30) and Toxic Characteristic Leachate Procedure (TCLP) metal analysis. Three discrete grab samples were also submitted for volatile organic compound (VOC) analysis. The hand augers were advanced to depths ranging from 0.5 to 2.5 feet below ground surface (bgs) using an AMS stainless steel hand auger. GZA collected one discrete VOC sample and one five-point composite soil sample (TCL/TAL+30 and TCLP metals) from each of the three waste characterization soil sets (WC-1A through WC-1E, WC-2A through WC-2E, and WC-3A through WC-3E) at the depth intervals of 0.0 to 0.5 feet, 0.5 to 1.5 feet and 1.5 to 2.5 feet bgs.



September 12, 2024 City of Rye – Nursery Field File No. 12.0077665.01 Page 2

Three discrete VOC soil samples were collected as follows:

- WC-1 was collected of the topsoil material from soil boring WC-1D at a depth of 0.0 to 0.5 feet bgs and represents the soil to be disposed offsite;
- WC-2 was collected of the fill material from soil boring WC-2A at a depth of 0.5 to 1.0 feet bgs; and
- WC-3 was collected of the fill material from soil boring WC-3B at a depth of 1.5 to 2.0 feet bgs.

Three five-point composite samples were collected as follows:

- WC-1 Composite was collected of the topsoil material from soil borings WC-1A through WC-1E;
- WC-2 Composite was collected of the fill material between 0.5 and 1.5 feet bgs from soil borings WC-2A through WC-2E; and
- WC-3 Composite was collected of the fill material between 1.5 and 2.5 feet bgs from soil borings WC-3A through WC-3E.

#### **Findings**

The topsoil material encountered in the hand augers generally consisted of dark brown fine to coarse grained sands with varying amounts of gravel that contained concrete, brick and glass fragments that was underlain by fill material that generally consisted of gray-brown to dark brown fine to coarse grained sands with varying amounts of gravel that contained asphalt, concrete, brick and glass fragments. The soils encountered were screened in the field with a calibrated photo-ionization detector (PID). No elevated PID readings or other field evidence of contamination (odors/staining) were observed. A plan showing the approximate location of sample locations is shown on Figure 2, Waste Characterizations Sample Locations.

The soil samples were placed into laboratory prepared containers, immediately stored on ice, and transported under chain-of-custody to Pace/Alpha Analytical (New York Certification No. 11148) for TAL/TCL+30 and TCLP metals testing. The laboratory testing was performed within appropriate holding times and achieved method detection levels below regulatory levels.

The laboratory testing of soil samples reported the following:

- WC-1
  - Pesticides
    - 4,4'-DDE (0.0129 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
    - 4,4'-DDT (0.00499 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
- WC-2
  - o Pesticides
    - 4,4'-DDD (0.00515 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033mg/kg).
    - 4,4'-DDE (0.0215 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
    - 4,4'-DDT (0.00614 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
  - o Metals
    - Arsenic (26.8 mg/kg). Exceeds the NY Unrestricted Use Criteria (13 mg/kg), Restricted Commercial Use Criteria (16 mg/kg), Restricted Residential Use Criteria (16 mg/kg), and Restricted Groundwater Use Criteria (16 mg/kg).
    - Lead (276 mg/kg. Exceeds the NY Unrestricted Use Criteria (63 mg/kg).
    - Nickel (33.9 mg/kg). Exceeds the NY Unrestricted Use Criteria (30 mg/kg).



September 12, 2024 City of Rye – Nursery Field File No. 12.0077665.01 Page 3

- Zinc (133 mg/kg). Exceeds the NY Unrestricted Use Criteria (109 mg/kg).
- WC-3
  - Pesticides
    - 4,4'-DDD (0.00433 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033mg/kg).
    - 4,4'-DDE (0.0189 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
    - 4,4'-DDT (0.0079 mg/kg). Exceeds the NY Unrestricted Use Criteria (0.0033 mg/kg).
  - o Metals
    - Lead (122 mg/kg). Exceeds the NY Unrestricted Use Criteria (63 mg/kg).

The soil samples were also submitted for TCLP metal analysis which is used to identify whether soil is a hazardous waste by characteristic. Based on the analysis, the soil on is considered non-hazardous.

The Pace Analytical Laboratory Summary Report is presented in Appendix II and the Pace Analytical Laboratory report in presented in Appendix III.

#### **Conclusions and Recommendations**

Laboratory results should be provided to the contractors, who will provide recommendations and costs for an appropriate disposal facility. GZA, to the extent possible, will assist with the completion of necessary paperwork for disposal acceptance.

We appreciate the opportunity to provide you with this information. Should you have any questions regarding the information herein, please contact Bob Jackson at Robert.Jackson@gza.com.

The following figures and appendices are attached and complete this letter:

Figure 1 – Regional Location Map Figure 2 – Waste Characterization Sample Locations Appendix I – Limitations Appendix II – Alpha Analytical Laboratory Summary Appendix III – Alpha Analytical Laboratory Report

Very truly yours, GZA GeoEnvironmental, Inc.

- Flijak

Benjamin Flizack Project Manager

Robert Jackson, PE Associate Principal

Michael / Morris

Michael Morris Consultant Reviewer



**FIGURES** 



File: NF\_RyeNY-F1\_SLM.mxd Date: 8/14/2024



|                                        | LEGEND                                                                                                                                                                                     | 2                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                      | WC-1A Ø                                                                                                                                                                                    | PROPERTY LINE<br>DESIGNATION AN<br>OF WASTE CHAR                                                                                                                                                          | ND APPROXIMATE I                                                                                                                                                                                           | LOCATION<br>MPLE                                                                                                                                                                                  |
| 5.26<br>5" MAPLE<br>× 6. <sup>Ť.</sup> | <u>Notes</u><br>1) = Backgroun<br>Inc. Nurser<br>Dated 9/21                                                                                                                                | d Image Source: Ra<br>ry Field Improvemen<br>/2023.                                                                                                                                                       | mboll Americas Eng<br>ts. Sheet C-100. Exi                                                                                                                                                                 | ineering Solutions,<br>sting Site Plan.                                                                                                                                                           |
| × 7.00                                 |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| WE X                                   |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| •                                      |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
|                                        |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
|                                        |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| 8.67 (<br>PRATING                      |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| WVF ANI                                |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| 8" MAPIA                               |                                                                                                                                                                                            | ź                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                   |
| ота<br>С<br>187М                       |                                                                                                                                                                                            |                                                                                                                                                                                                           | 2                                                                                                                                                                                                          |                                                                                                                                                                                                   |
| 14 0 3 5 A                             |                                                                                                                                                                                            |                                                                                                                                                                                                           | m                                                                                                                                                                                                          |                                                                                                                                                                                                   |
| MAPLE                                  | 0                                                                                                                                                                                          | 25' 5<br>SCALE                                                                                                                                                                                            | 0'<br>IN FEET                                                                                                                                                                                              | 100'                                                                                                                                                                                              |
| 2"  0  RHEP                            | UNLESS SPECIFICALLY ST<br>GEOENVIRONMENTAL, INC. (<br>CLIENT OF THE CLIENT'S DI<br>THE DRAWING. THE DRAWIN<br>USE AT ANY OTHER LOCATI<br>TRANSFER, REUSE, OR MOC<br>EXPRESS CONSENT OF GZA | TATED BY WRITTEN AGREEM<br>(GZA). THE INFORMATION SHO<br>ESIGNATED REPRESENTATIVE I<br>UG SHALL NOT BE TRANSFERI<br>ON OR FOR ANY OTHER PURI<br>DIFICATION TO THE DRAWING I<br>A, WILL BE AT THE USER'S S | IENT, THIS DRAWING IS THE<br>DWN ON THE DRAWING IS SOL<br>FOR THE SPECIFIC PROJECT A<br>RED, REUSED, COPIED, OR AL<br>POSE WITHOUT THE PRIOR WRI<br>BY THE CLIENT OR OTHERS.'<br>GOLE RISK AND WITHOUT ANY | E SOLE PROPERTY OF GZA<br>ELY FOR THE USE BY GZA'S<br>IND LOCATION IDENTIFIED ON<br>TERED IN ANY MANNER FOR<br>TTEN CONSENT OF GZA. ANY<br>WITHOUT THE PRIOR WRITTEN<br>RISK OR LIABILITY TO GZA. |
| 8" MAPLE.<br>14" M.                    |                                                                                                                                                                                            | RYE NY NUR<br>421 MILT<br>RYE, NE                                                                                                                                                                         | SERY FIELDS<br>ON ROAD<br>W YORK                                                                                                                                                                           |                                                                                                                                                                                                   |
| PLE<br>12" CHE                         | WASTE CH                                                                                                                                                                                   | ARACTERIZAT                                                                                                                                                                                               | ION SAMPLE L                                                                                                                                                                                               | OCATIONS                                                                                                                                                                                          |
| 2" TRIPLE M                            | PREPARED BY:<br>GZA Geol<br>Engineer<br>ww                                                                                                                                                 | Environmental, Inc.<br>s and Scientists<br>w.gza.com                                                                                                                                                      | PREPARED FOR:                                                                                                                                                                                              | -                                                                                                                                                                                                 |
| 318" CHI                               | PROJ MGR:<br>DESIGNED BY: PM<br>DATE:<br>AUGUST 2024                                                                                                                                       | REVIEWED BY:<br>DRAWN BY: PTMP<br>PROJECT NO.<br>12.0077665.01                                                                                                                                            | CHECKED BY:<br>SCALE: 1" = 50'<br>REVISION NO.                                                                                                                                                             | FIGURE<br>2<br>SHEET NO.                                                                                                                                                                          |

# TENEN VIRONMENTAL

121 West 27<sup>th</sup> Street, Suite 702 New York, NY 10001 (646) 606-2332

## MEMORANDUM

| DATE:    | October 4, 2024                                                        |
|----------|------------------------------------------------------------------------|
| TO:      | Kristen Wilson Corporation Counsel / City of Rye                       |
| FROM:    | Matthew M. Carroll, PE / Tenen Environmental                           |
| SUBJECT: | Review of Soil Results<br>Proposed Nursery Field Improvements, Rye, NY |

Tenen Environmental (Tenen) has reviewed the GZA Waste Disposal Soil Characterization, Proposed Turf Field report, dated September 12, 2024, as well as the bid package drawings for the Nursery Field Improvements, dated July 29, 2024.

The concentrations detected in the soil samples do not require reporting to any regulatory agency; however, the results have been compared to NYSDEC standards, criteria and guidance to ensure that the management of the material is appropriate. Based on a review of the NYSDEC Technical Support Document (TSD, September 2006), the existing conditions of the field ("active recreational uses, which are public uses with a reasonable potential for soil contact"), the appropriate soil cleanup objectives (SCOs) are the Restricted-Residential Use SCOs. The surface results, represented by sample, WC-1, were below these SCOs; therefore, the existing use is appropriate based on the testing. Tenen notes that if the proposed improvements are not implemented, the existing conditions should be further evaluated given the deeper soil concentrations.

A deeper sample, WC-2, collected from the 0.5 to 1.0 foot interval, contained arsenic above the Restricted-Residential SCOs. Typically, NYSDEC requires a two-foot soil cap or an engineered cap to prevent contact with underlying contaminated soil. Based on a review of the bid documents, specifically, Detail 1 on Drawing C-502, an eight-inch graded stone layer will be placed over geotextile fabric. This is appropriate to limit the potential for contact with the underlying soil.

Drawing C-301 shows that existing grade will be modified to create a flat playing surface. Up to two feet of soil is proposed for reuse in the lower areas of the field. Based on review of the NYSDEC Part 360 solid waste regulations, the grading is not considered to be generating waste. Specifically, Section 360.12 Beneficial use, subparagraph c(iv) states that "[t]he materials in this subparagraph cease to be waste when used for grade adjustment on the site of generation" and clarifies in part (*a*) that "[e]xcavated material used to backfill the same excavation or as grade adjustment in areas of similar physical characteristics on the site of generation. If the material exhibits visual or historical evidence of contamination (including odors) and will be used in an area with public access, the material must be covered with pavement, foundation, or with a minimum of 12 inches of soil or fill that meets the criteria to be used as Fill Type 1 and Fill Type 2 in section 360.13 of this Part." As noted previously, the eight-inch gravel layer and underlying geotextile fabric is an appropriate cap to prevent contact with the underlying soil.



September 26, 2024

Ryan Coyne City of Rye 1051 Boston Post Road Rye, NY 10580 Infill Results

RE: Project: Rye Turf Project Pace Project No.: 10703542

Dear Ryan Coyne:

Enclosed are the analytical results for sample(s) received by the laboratory on August 09, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kugh Hegherf

Kirsten Hogberg kirsten.hogberg@pacelabs.com (612)607-1700 Project Manager

Enclosures





Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: Rye Turf Project Pace Project No.: 10703542

#### Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 GMP+ Certification #: GMP050884 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 ISO/IEC 17025 Certification via A2LA #: 2926.01 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification via A2LA #: 2926.01 USDA Permit #: P330-19-00208



#### SAMPLE SUMMARY

| Project:<br>Pace Project No | Rye Turf Project<br>10703542 |        |                |                |
|-----------------------------|------------------------------|--------|----------------|----------------|
| Lab ID                      | Sample ID                    | Matrix | Date Collected | Date Received  |
| 10703542001                 | INFILL                       | Solid  | 08/07/24 12:13 | 08/09/24 09:50 |



#### SAMPLE ANALYTE COUNT

Project:Rye Turf ProjectPace Project No.:10703542

| Lab ID      | Sample ID | Method         | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|----------------|----------|----------------------|------------|
| 10703542001 | INFILL    | EPA 1633 DRAFT | NBH      | 64                   | PASI-M     |

PASI-M = Pace Analytical Services - Minneapolis



#### SUMMARY OF DETECTION

| Project:<br>Pace Project No.: | Rye Turf Project<br>10703542   |        |       |              |                |            |
|-------------------------------|--------------------------------|--------|-------|--------------|----------------|------------|
| Lab Sample ID<br>Method       | Client Sample ID<br>Parameters | Result | Units | Report Limit | Analyzed       | Qualifiers |
| 10703542001                   | INFILL                         |        |       |              |                |            |
| EPA 1633 DRAFT                | NFDHA                          | 24.6   | ug/kg | 1.0          | 09/19/24 12:30 |            |



#### ANALYTICAL RESULTS

| Project: Ry | ye Turf Project |
|-------------|-----------------|
|-------------|-----------------|

Pace Project No.: 10703542

| Sample: INFILL               | Lab ID:      | 107035420     | 01 Collected  | d: 08/07/24 | 112:13   | Received: 08/    | 09/24 09:50 Ma | atrix: Solid |      |
|------------------------------|--------------|---------------|---------------|-------------|----------|------------------|----------------|--------------|------|
| Results reported on a "wet-w | eight" basis |               |               |             |          |                  |                |              |      |
|                              |              |               | Report        |             |          |                  |                |              |      |
| Parameters                   | Results      | Units         | Limit         | MDL         | DF       | Prepared         | Analyzed       | CAS No.      | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EP    | A 1633 DRAFT  | Preparatio  | on Met   | hod: EPA 1633 DF | RAFT           |              |      |
|                              | Initial Volu | ime/Weight:   | 1.961 g Final | Volume/We   | eight: 5 | mL               |                |              |      |
|                              | Pace Anal    | ytical Servic | es - Minneapo | lis         |          |                  |                |              |      |
| 11CI-PE3OUdS                 | ND           | ua/ka         | 2.0           | 0.57        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 763051-92-9  |      |
| 3:3 FTCA                     | ND           | ug/kg         | 2.5           | 0.86        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 356-02-5     |      |
| 4:2 FTS                      | ND           | ug/kg         | 2.0           | 0.45        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 757124-72-4  |      |
| 5:3 FTCA                     | ND           | ua/ka         | 12.7          | 2.4         | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 914637-49-3  |      |
| 6:2 FTS                      | ND           | ua/ka         | 2.0           | 0.45        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 27619-97-2   |      |
| 7:3 FTCA                     | ND           | ua/ka         | 12.7          | 2.2         | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 812-70-4     |      |
| 8:2 FTS                      | ND           | ua/ka         | 2.0           | 0.53        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 39108-34-4   |      |
| 9CI-PF3ONS                   | ND           | ua/ka         | 2.0           | 0.56        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 756426-58-1  |      |
| ADONA                        | ND           | ua/ka         | 2.0           | 0.43        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 919005-14-4  |      |
| HFPO-DA                      | ND           | ua/ka         | 2.0           | 0.58        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 13252-13-6   |      |
| NEtFOSAA                     | ND           | ua/ka         | 0.51          | 0.13        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 2991-50-6    |      |
| NEtFOSA                      | ND           | ua/ka         | 0.51          | 0.17        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 4151-50-2    |      |
| NEtFOSE                      | ND           | ua/ka         | 5.1           | 1.5         | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 1691-99-2    |      |
| NFDHA                        | 24.6         | ua/ka         | 1.0           | 0.28        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 151772-58-6  |      |
| NMeFOSAA                     | ND           | ua/ka         | 0.51          | 0.20        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 2355-31-9    |      |
| NMeFOSA                      | ND           | ua/ka         | 0.51          | 0.17        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 31506-32-8   |      |
| NMeFOSE                      | ND           | ug/kg         | 5.1           | 1.9         | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 24448-09-7   |      |
| PFBS                         | ND           | ug/kg         | 0.51          | 0.12        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 375-73-5     |      |
| PFDA                         | ND           | ua/ka         | 0.51          | 0.11        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 335-76-2     |      |
| PFHxA                        | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 307-24-4     |      |
| PFBA                         | ND           | ua/ka         | 2.0           | 0.58        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 375-22-4     |      |
| PFDS                         | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 335-77-3     |      |
| PFDoS                        | ND           | ug/kg         | 0.51          | 0.14        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 79780-39-5   |      |
| PFEESA                       | ND           | ug/kg         | 1.0           | 0.21        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 113507-82-7  |      |
| PFHpS                        | ND           | ug/kg         | 0.51          | 0.13        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 375-92-8     |      |
| PFMBA                        | ND           | ug/kg         | 1.0           | 0.28        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 863090-89-5  |      |
| PFMPA                        | ND           | ug/kg         | 1.0           | 0.33        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 377-73-1     |      |
| PFNS                         | ND           | ug/kg         | 0.51          | 0.14        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 68259-12-1   |      |
| PFOSA                        | ND           | ug/kg         | 0.51          | 0.11        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 754-91-6     |      |
| PFPeA                        | ND           | ug/kg         | 1.0           | 0.27        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 2706-90-3    |      |
| PFPeS                        | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 2706-91-4    |      |
| PFDoA                        | ND           | ug/kg         | 0.51          | 0.13        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 307-55-1     |      |
| PFHpA                        | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 375-85-9     |      |
| PFHxS                        | ND           | ug/kg         | 0.51          | 0.13        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 355-46-4     |      |
| PFNA                         | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 375-95-1     |      |
| PFOS                         | ND           | ug/kg         | 0.51          | 0.13        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 1763-23-1    |      |
| PFOA                         | ND           | ug/kg         | 0.51          | 0.18        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 335-67-1     |      |
| PFTeDA                       | ND           | ug/kg         | 0.51          | 0.15        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 376-06-7     |      |
| PFTrDA                       | ND           | ug/kg         | 0.51          | 0.12        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 72629-94-8   |      |
| PFUnA                        | ND           | ug/kg         | 0.51          | 0.14        | 1        | 09/17/24 08:40   | 09/19/24 12:30 | 2058-94-8    |      |
| Surrogates                   |              |               |               |             |          |                  |                |              |      |
| 13C2-PFDoA (S)               | 91           | %.            | 40-130        |             | 1        | 09/17/24 08:40   | 09/19/24 12:30 |              |      |
| 13C3HFPO-DA (S)              | 19           | %.            | 40-130        |             | 1        | 09/17/24 08:40   | 09/19/24 12:30 |              | S0   |



#### ANALYTICAL RESULTS

Project: Rye Turf Project

Pace Project No.: 10703542

| Sample: INFILL               | Lab ID:      | 10703542001      | Collected  | d: 08/07/2 | 24 12:13    | Received: 08/   | 09/24 09:50 Ma | trix: Solid |      |
|------------------------------|--------------|------------------|------------|------------|-------------|-----------------|----------------|-------------|------|
| Results reported on a "wet-w | eight" basis |                  |            |            |             |                 |                |             |      |
|                              |              |                  | Report     |            |             |                 |                |             |      |
| Parameters                   | Results      | Units            | Limit      | MDL        | DF          | Prepared        | Analyzed       | CAS No.     | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EPA 1    | 633 DRAF1  | F Prepara  | tion Meth   | od: EPA 1633 DF | RAFT           |             |      |
|                              | Initial Volu | me/Weight: 1.9   | 61 g Final | Volume/W   | /eight: 5 r | mL              |                |             |      |
|                              | Pace Anal    | lytical Services | - Minneapo | lis        | -           |                 |                |             |      |
| Surrogates                   |              |                  |            |            |             |                 |                |             |      |
| 13C3-PFBS (S)                | 26           | %.               | 40-135     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C3-PFHxS (S)               | 50           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C4-PFBA (S)                | 3            | %.               | 8-130      |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C4-PFHpA (S)               | 29           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C5-PFHxA (S)               | 22           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C5-PFPeA (S)               | 9            | %.               | 35-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C6-PFDA (S)                | 58           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C8-PFOA (S)                | 40           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C8-PFOS (S)                | 71           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C8-PFOSA (S)               | 89           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C9-PFNA (S)                | 48           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| d3-MeFOSAA (S)               | 67           | %.               | 40-135     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| d3-NMeFOSA (S)               | 10           | %.               | 10-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| d5-EtFOSAA (S)               | 42           | %.               | 40-150     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| d5-NEtFOSA (S)               | 2            | %.               | 10-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| d7-NMeFOSE (S)               | 53           | %.               | 20-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| d9-NEtFOSE (S)               | 0            | %.               | 15-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C2-PFTA (S)                | 107          | %.               | 20-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C7-PFUdA (S)               | 90           | %.               | 40-130     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C24:2FTS (S)               | 24           | %.               | 40-165     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             | S0   |
| 13C26:2FTS (S)               | 72           | %.               | 40-215     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |
| 13C28:2FTS (S)               | 137          | %.               | 40-275     |            | 1           | 09/17/24 08:40  | 09/19/24 12:30 |             |      |



Rye Turf Project

Project:

#### **QUALITY CONTROL DATA**

| Pace Project No.: 10703542       |       |                                       |           |                 |                      |
|----------------------------------|-------|---------------------------------------|-----------|-----------------|----------------------|
| QC Batch: 964554                 |       | Analysis Meth                         | nod: EPA  | 1633 DRAFT      |                      |
| QC Batch Method: EPA 1633 DRAFT  |       | Analysis Description:                 |           | 3 SL            |                      |
|                                  |       | Laboratory:                           | Pac       | e Analvtical Se | rvices - Minneapolis |
| Associated Lab Samples: 10703542 | 2001  | , , , , , , , , , , , , , , , , , , , |           |                 |                      |
| METHOD BLANK: 5040726            |       | Matrix:                               | Solid     |                 |                      |
| Associated Lab Samples: 10703542 | 2001  |                                       |           |                 |                      |
|                                  |       | Blank                                 | Reporting |                 |                      |
| Parameter                        | Units | Result                                | Limit     | MDL             | Analyzed             |
| 11CI-PF3OUdS                     | ug/kg | <br>ND                                | 0.80      | 0.22            | 09/19/24 09:00       |
| 3:3 FTCA                         | ug/kg | ND                                    | 1.0       | 0.34            | 09/19/24 09:00       |
| 4:2 FTS                          | ug/kg | ND                                    | 0.80      | 0.18            | 09/19/24 09:00       |
| 5:3 FTCA                         | ug/kg | ND                                    | 5.0       | 0.94            | 09/19/24 09:00       |
| 6:2 FTS                          | ug/kg | ND                                    | 0.80      | 0.18            | 09/19/24 09:00       |
| 7:3 FTCA                         | ug/kg | ND                                    | 5.0       | 0.87            | 09/19/24 09:00       |
| 8:2 FTS                          | ug/kg | ND                                    | 0.80      | 0.21            | 09/19/24 09:00       |
| 9CI-PF3ONS                       | ug/kg | ND                                    | 0.80      | 0.22            | 09/19/24 09:00       |
| ADONA                            | ug/kg | ND                                    | 0.80      | 0.17            | 09/19/24 09:00       |
| HFPO-DA                          | ug/kg | ND                                    | 0.80      | 0.23            | 09/19/24 09:00       |
| NEtFOSA                          | ug/kg | ND                                    | 0.20      | 0.068           | 09/19/24 09:00       |
| NEtFOSAA                         | ug/kg | ND                                    | 0.20      | 0.052           | 09/19/24 09:00       |
| NEtFOSE                          | ug/kg | ND                                    | 2.0       | 0.58            | 09/19/24 09:00       |
| NFDHA                            | ug/kg | ND                                    | 0.40      | 0.11            | 09/19/24 09:00       |
|                                  |       |                                       | 0.00      | 0.005           | 00/10/01 00 00       |

|              |       | Blank  | Reporting |       |                |            |
|--------------|-------|--------|-----------|-------|----------------|------------|
| Parameter    | Units | Result | Limit     | MDL   | Analyzed       | Qualifiers |
| 11CI-PF3OUdS | ug/kg | ND     | 0.80      | 0.22  | 09/19/24 09:00 |            |
| 3:3 FTCA     | ug/kg | ND     | 1.0       | 0.34  | 09/19/24 09:00 |            |
| 4:2 FTS      | ug/kg | ND     | 0.80      | 0.18  | 09/19/24 09:00 |            |
| 5:3 FTCA     | ug/kg | ND     | 5.0       | 0.94  | 09/19/24 09:00 |            |
| 6:2 FTS      | ug/kg | ND     | 0.80      | 0.18  | 09/19/24 09:00 |            |
| 7:3 FTCA     | ug/kg | ND     | 5.0       | 0.87  | 09/19/24 09:00 |            |
| 8:2 FTS      | ug/kg | ND     | 0.80      | 0.21  | 09/19/24 09:00 |            |
| 9CI-PF3ONS   | ug/kg | ND     | 0.80      | 0.22  | 09/19/24 09:00 |            |
| ADONA        | ug/kg | ND     | 0.80      | 0.17  | 09/19/24 09:00 |            |
| HFPO-DA      | ug/kg | ND     | 0.80      | 0.23  | 09/19/24 09:00 |            |
| NEtFOSA      | ug/kg | ND     | 0.20      | 0.068 | 09/19/24 09:00 |            |
| NEtFOSAA     | ug/kg | ND     | 0.20      | 0.052 | 09/19/24 09:00 |            |
| NEtFOSE      | ug/kg | ND     | 2.0       | 0.58  | 09/19/24 09:00 |            |
| NFDHA        | ug/kg | ND     | 0.40      | 0.11  | 09/19/24 09:00 |            |
| NMeFOSA      | ug/kg | ND     | 0.20      | 0.065 | 09/19/24 09:00 |            |
| NMeFOSAA     | ug/kg | ND     | 0.20      | 0.077 | 09/19/24 09:00 |            |
| NMeFOSE      | ug/kg | ND     | 2.0       | 0.73  | 09/19/24 09:00 |            |
| PFBA         | ug/kg | ND     | 0.80      | 0.23  | 09/19/24 09:00 |            |
| PFBS         | ug/kg | ND     | 0.20      | 0.045 | 09/19/24 09:00 |            |
| PFDA         | ug/kg | ND     | 0.20      | 0.045 | 09/19/24 09:00 |            |
| PFDoA        | ug/kg | ND     | 0.20      | 0.050 | 09/19/24 09:00 |            |
| PFDoS        | ug/kg | ND     | 0.20      | 0.054 | 09/19/24 09:00 |            |
| PFDS         | ug/kg | ND     | 0.20      | 0.059 | 09/19/24 09:00 |            |
| PFEESA       | ug/kg | ND     | 0.40      | 0.081 | 09/19/24 09:00 |            |
| PFHpA        | ug/kg | ND     | 0.20      | 0.057 | 09/19/24 09:00 |            |
| PFHpS        | ug/kg | ND     | 0.20      | 0.052 | 09/19/24 09:00 |            |
| PFHxA        | ug/kg | ND     | 0.20      | 0.058 | 09/19/24 09:00 |            |
| PFHxS        | ug/kg | ND     | 0.20      | 0.051 | 09/19/24 09:00 |            |
| PFMBA        | ug/kg | ND     | 0.40      | 0.11  | 09/19/24 09:00 |            |
| PFMPA        | ug/kg | ND     | 0.40      | 0.13  | 09/19/24 09:00 |            |
| PFNA         | ug/kg | ND     | 0.20      | 0.060 | 09/19/24 09:00 |            |
| PFNS         | ug/kg | ND     | 0.20      | 0.053 | 09/19/24 09:00 |            |
| PFOA         | ug/kg | ND     | 0.20      | 0.071 | 09/19/24 09:00 |            |
| PFOS         | ug/kg | ND     | 0.20      | 0.050 | 09/19/24 09:00 |            |
| PFOSA        | ug/kg | ND     | 0.20      | 0.044 | 09/19/24 09:00 |            |
| PFPeA        | ug/kg | ND     | 0.40      | 0.11  | 09/19/24 09:00 |            |
| PFPeS        | ug/kg | ND     | 0.20      | 0.060 | 09/19/24 09:00 |            |
| PFTeDA       | ug/kg | ND     | 0.20      | 0.060 | 09/19/24 09:00 |            |
| PFTrDA       | ug/kg | ND     | 0.20      | 0.048 | 09/19/24 09:00 |            |
| PFUnA        | ug/kg | ND     | 0.20      | 0.054 | 09/19/24 09:00 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703542         |

|                                |       | Matrix  | Solid     |     |                |            |
|--------------------------------|-------|---------|-----------|-----|----------------|------------|
| Appopieted Lob Complex: 407005 | 40004 | matrix. | Cond      |     |                |            |
| Associated Lab Samples. 107035 | 42001 | Blank   | Reporting |     |                |            |
| Parameter                      | Units | Result  | Limit     | MDL | Analyzed       | Qualifiers |
| 13C2-PFDoA (S)                 | %.    | 83      | 40-130    |     | 09/19/24 09:00 |            |
| 13C2-PFTA (S)                  | %.    | 81      | 20-130    |     | 09/19/24 09:00 |            |
| 13C24:2FTS (S)                 | %.    | 108     | 40-165    |     | 09/19/24 09:00 |            |
| 13C26:2FTS (S)                 | %.    | 103     | 40-215    |     | 09/19/24 09:00 |            |
| 13C28:2FTS (S)                 | %.    | 104     | 40-275    |     | 09/19/24 09:00 |            |
| 13C3-PFBS (S)                  | %.    | 103     | 40-135    |     | 09/19/24 09:00 |            |
| 13C3-PFHxS (S)                 | %.    | 99      | 40-130    |     | 09/19/24 09:00 |            |
| 13C3HFPO-DA (S)                | %.    | 96      | 40-130    |     | 09/19/24 09:00 |            |
| 13C4-PFBA (S)                  | %.    | 95      | 8-130     |     | 09/19/24 09:00 |            |
| 13C4-PFHpA (S)                 | %.    | 96      | 40-130    |     | 09/19/24 09:00 |            |
| 13C5-PFHxA (S)                 | %.    | 93      | 40-130    |     | 09/19/24 09:00 |            |
| 13C5-PFPeA (S)                 | %.    | 97      | 35-130    |     | 09/19/24 09:00 |            |
| 13C6-PFDA (S)                  | %.    | 92      | 40-130    |     | 09/19/24 09:00 |            |
| 13C7-PFUdA (S)                 | %.    | 89      | 40-130    |     | 09/19/24 09:00 |            |
| 13C8-PFOA (S)                  | %.    | 94      | 40-130    |     | 09/19/24 09:00 |            |
| 13C8-PFOS (S)                  | %.    | 99      | 40-130    |     | 09/19/24 09:00 |            |
| 13C8-PFOSA (S)                 | %.    | 87      | 40-130    |     | 09/19/24 09:00 |            |
| 13C9-PFNA (S)                  | %.    | 94      | 40-130    |     | 09/19/24 09:00 |            |
| d3-MeFOSAA (S)                 | %.    | 88      | 40-135    |     | 09/19/24 09:00 |            |
| d3-NMeFOSA (S)                 | %.    | 68      | 10-130    |     | 09/19/24 09:00 |            |
| d5-EtFOSAA (S)                 | %.    | 89      | 40-150    |     | 09/19/24 09:00 |            |
| d5-NEtFOSA (S)                 | %.    | 68      | 10-130    |     | 09/19/24 09:00 |            |
| d7-NMeFOSE (S)                 | %.    | 70      | 20-130    |     | 09/19/24 09:00 |            |
| d9-NEtFOSE (S)                 | %.    | 71      | 15-130    |     | 09/19/24 09:00 |            |

| LABORATORY CONTROL SAMPLE & LCSD | : 5040727 |       | 50     | 40728  |       |       |        |     |     |            |
|----------------------------------|-----------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                  |           | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                        | Units     | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| 11CI-PF3OUdS                     | ug/kg     | 9.1   | 8.9    | 8.3    | 99    | 91    | 45-160 | 8   | 30  |            |
| 3:3 FTCA                         | ug/kg     | 12    | 12.3   | 11.5   | 102   | 96    | 45-130 | 6   | 30  |            |
| 4:2 FTS                          | ug/kg     | 9     | 9.0    | 9.3    | 100   | 104   | 60-150 | 3   | 30  |            |
| 5:3 FTCA                         | ug/kg     | 60    | 57.9   | 54.8   | 97    | 91    | 60-130 | 6   | 30  |            |
| 6:2 FTS                          | ug/kg     | 9.1   | 9.2    | 9.3    | 100   | 102   | 55-200 | 2   | 30  |            |
| 7:3 FTCA                         | ug/kg     | 60    | 55.8   | 51.7   | 93    | 86    | 60-150 | 7   | 30  |            |
| 8:2 FTS                          | ug/kg     | 9.2   | 9.9    | 9.7    | 108   | 105   | 70-150 | 2   | 30  |            |
| 9CI-PF3ONS                       | ug/kg     | 9     | 9.0    | 8.4    | 100   | 94    | 70-150 | 7   | 30  |            |
| ADONA                            | ug/kg     | 9.1   | 8.8    | 8.4    | 97    | 93    | 70-160 | 4   | 30  |            |
| HFPO-DA                          | ug/kg     | 9.6   | 9.3    | 9.0    | 96    | 94    | 70-145 | 3   | 30  |            |
| NEtFOSA                          | ug/kg     | 2.4   | 2.1    | 2.1    | 89    | 89    | 70-140 | 0   | 30  |            |
| NEtFOSAA                         | ug/kg     | 2.4   | 2.4    | 2.3    | 99    | 97    | 65-165 | 1   | 30  |            |
| NEtFOSE                          | ug/kg     | 24    | 23.3   | 23.6   | 97    | 98    | 70-135 | 1   | 30  |            |
| NFDHA                            | ug/kg     | 4.8   | 4.9    | 4.6    | 101   | 96    | 60-155 | 5   | 30  |            |
| NMeFOSA                          | ug/kg     | 2.4   | 2.1    | 2.3    | 89    | 96    | 70-155 | 7   | 30  |            |
| NMeFOSAA                         | ug/kg     | 2.4   | 2.2    | 2.1    | 93    | 89    | 65-155 | 4   | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ace

| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703542         |

| LABORATORY CONTROL SAMPLE & LCSE | D: 5040727 |       | 50     | 40728  |       |       |        |     |     |            |
|----------------------------------|------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                  |            | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                        | Units      | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| NMeFOSE                          | ug/kg      | 24    | 23.3   | 23.2   | 97    | 97    | 70-140 | 0   | 30  |            |
| PFBA                             | ug/kg      | 9.6   | 9.8    | 9.1    | 102   | 95    | 70-140 | 7   | 30  |            |
| PFBS                             | ug/kg      | 2.1   | 2.0    | 2.0    | 93    | 95    | 65-145 | 2   | 30  |            |
| PFDA                             | ug/kg      | 2.4   | 2.3    | 2.3    | 95    | 96    | 70-155 | 1   | 30  |            |
| PFDoA                            | ug/kg      | 2.4   | 2.4    | 2.3    | 98    | 97    | 70-150 | 1   | 30  |            |
| PFDoS                            | ug/kg      | 2.3   | 2.0    | 2.1    | 85    | 88    | 25-160 | 4   | 30  |            |
| PFDS                             | ug/kg      | 2.3   | 2.1    | 2.1    | 90    | 90    | 40-155 | 0   | 30  |            |
| PFEESA                           | ug/kg      | 4.3   | 4.3    | 4.0    | 100   | 93    | 70-140 | 7   | 30  |            |
| PFHpA                            | ug/kg      | 2.4   | 2.4    | 2.3    | 100   | 97    | 65-145 | 2   | 30  |            |
| PFHpS                            | ug/kg      | 2.3   | 2.1    | 2.2    | 90    | 95    | 65-155 | 5   | 30  |            |
| PFHxA                            | ug/kg      | 2.4   | 2.4    | 2.3    | 99    | 97    | 65-140 | 2   | 30  |            |
| PFHxS                            | ug/kg      | 2.2   | 2.1    | 2.1    | 97    | 96    | 60-150 | 1   | 30  |            |
| PFMBA                            | ug/kg      | 4.8   | 4.7    | 4.5    | 98    | 93    | 60-150 | 5   | 30  |            |
| PFMPA                            | ug/kg      | 4.8   | 4.7    | 4.4    | 97    | 92    | 30-140 | 5   | 30  |            |
| PFNA                             | ug/kg      | 2.4   | 2.4    | 2.4    | 99    | 99    | 70-155 | 1   | 30  |            |
| PFNS                             | ug/kg      | 2.3   | 2.1    | 2.1    | 90    | 90    | 55-140 | 0   | 30  |            |
| PFOA                             | ug/kg      | 2.4   | 2.4    | 2.3    | 99    | 97    | 70-150 | 2   | 30  |            |
| PFOS                             | ug/kg      | 2.2   | 2.0    | 2.0    | 92    | 90    | 65-160 | 2   | 30  |            |
| PFOSA                            | ug/kg      | 2.4   | 2.3    | 2.3    | 96    | 96    | 70-140 | 1   | 30  |            |
| PFPeA                            | ug/kg      | 4.8   | 4.7    | 4.6    | 98    | 95    | 60-150 | 3   | 30  |            |
| PFPeS                            | ua/ka      | 2.3   | 2.2    | 2.2    | 98    | 98    | 55-160 | 0   | 30  |            |
| PFTeDA                           | ua/ka      | 2.4   | 2.4    | 2.4    | 99    | 100   | 65-150 | 2   | 30  |            |
| PFTrDA                           | ua/ka      | 2.4   | 2.3    | 2.3    | 96    | 96    | 65-150 | 0   | 30  |            |
| PFUnA                            | ua/ka      | 2.4   | 2.3    | 2.3    | 95    | 96    | 70-155 | 1   | 30  |            |
| 13C2-PFDoA (S)                   | %.         |       |        |        | 87    | 86    | 40-130 |     |     |            |
| 13C2-PFTA (S)                    | %.         |       |        |        | 83    | 84    | 20-130 |     |     |            |
| 13C24:2FTS (S)                   | %.         |       |        |        | 95    | 94    | 40-165 |     |     |            |
| 13C26:2FTS (S)                   | %.         |       |        |        | 99    | 100   | 40-215 |     |     |            |
| 13C28:2FTS (S)                   | %.         |       |        |        | 92    | 97    | 40-275 |     |     |            |
| 13C3-PFBS (S)                    | %.         |       |        |        | 98    | 98    | 40-135 |     |     |            |
| 13C3-PFHxS (S)                   | %.         |       |        |        | 95    | 97    | 40-130 |     |     |            |
| 13C3HFPO-DA (S)                  | %.         |       |        |        | 93    | 94    | 40-130 |     |     |            |
| 13C4-PFBA (S)                    | %.         |       |        |        | 89    | 94    | 8-130  |     |     |            |
| 13C4-PFHpA (S)                   | %.         |       |        |        | 92    | 92    | 40-130 |     |     |            |
| 13C5-PFHxA (S)                   | %.         |       |        |        | 89    | 92    | 40-130 |     |     |            |
| 13C5-PFPeA (S)                   | %.         |       |        |        | 91    | 94    | 35-130 |     |     |            |
| 13C6-PFDA (S)                    | %.         |       |        |        | 92    | 91    | 40-130 |     |     |            |
| 13C7-PFUdA (S)                   | %.         |       |        |        | 91    | 89    | 40-130 |     |     |            |
| 13C8-PFOA (S)                    | %.         |       |        |        | 93    | 95    | 40-130 |     |     |            |
| 13C8-PFOS (S)                    | %.         |       |        |        | 101   | 93    | 40-130 |     |     |            |
| 13C8-PFOSA (S)                   | %.         |       |        |        | 88    | 83    | 40-130 |     |     |            |
| 13C9-PFNA (S)                    | %.         |       |        |        | 93    | 94    | 40-130 |     |     |            |
| d3-MeFOSAA (S)                   | %.         |       |        |        | 88    | 84    | 40-135 |     |     |            |
| d3-NMeEOSA (S)                   | %          |       |        |        | 67    | 59    | 10-130 |     |     |            |
| d5-EtFOSAA (S)                   | %.         |       |        |        | 90    | 86    | 40-150 |     |     |            |
| d5-NEtEOSA (S)                   | %          |       |        |        | 66    | 61    | 10-130 |     |     |            |
| d7-NMeFOSE (S)                   | %.         |       |        |        | 70    | 65    | 20-130 |     |     |            |
| \-/                              |            |       |        |        |       |       |        |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703542         |

| LABORATORY CONTROL SAMPLE & | 5040728 |       |        |             |       |                 |                  |            |     |            |
|-----------------------------|---------|-------|--------|-------------|-------|-----------------|------------------|------------|-----|------------|
|                             |         | Spike | LCS    | LCSD        | LCS   | LCSE            | D % Rec          |            | Max |            |
| Parameter                   | Units   | Conc. | Result | Result      | % Rec | % Re            | c Limits         | RPD        | RPD | Qualifiers |
| d9-NEtFOSE (S)              | %.      |       |        |             | 70    | 6               | 6 15-130         |            |     |            |
| LABORATORY CONTROL SAMPLE:  | 5040729 |       |        |             |       |                 |                  |            |     |            |
|                             |         | Spike | LCS    |             | LCS   |                 | % Rec            |            |     |            |
| Parameter                   | Units   | Conc. | Result |             | % Rec |                 | Limits           | Qualifiers |     |            |
| 11CI-PF3OUdS                | ug/kg   | 0.76  | .6     | 63J         | 8     | 34              | 45-160           |            |     |            |
| 3:3 FTCA                    | ug/kg   | 1     |        | 1.0         | 10    | )1              | 45-130           |            |     |            |
| 4:2 FTS                     | ug/kg   | 0.75  | .6     | 66J         | 8     | 38              | 60-150           |            |     |            |
| 5:3 FTCA                    | ug/kg   | 5     | 4      | .2J         | 8     | 35              | 60-130           |            |     |            |
| 6:2 FTS                     | ug/kg   | 0.76  |        | 73J         | ę     | 96              | 55-200           |            |     |            |
| 7:3 FTCA                    | ug/kg   | 5     |        | 4J          | 8     | 30              | 60-150           |            |     |            |
| 8:2 FTS                     | ug/kg   | 0.77  |        | 78J         | 10    | )2              | 70-150           |            |     |            |
| 9CI-PF3ONS                  | ug/kg   | 0.75  | .6     | 65J         | 8     | 37              | 70-150           |            |     |            |
| ADONA                       | ug/kg   | 0.76  | .6     | 67J         | 8     | 39              | 70-160           |            |     |            |
| HFPO-DA                     | ug/kg   | 0.8   |        | 79J         | ç     | 98              | 70-145           |            |     |            |
| NEtFOSA                     | ug/kg   | 0.2   |        | 17J         | 8     | 36              | 70-140           |            |     |            |
| NEtFOSAA                    | ug/kg   | 0.2   | 0      | .20         | 1(    | )2              | 65-165           |            |     |            |
| NEtFOSE                     | ug/kg   | 2     | 1      | .9J         | ę     | 95              | 70-135           |            |     |            |
| NFDHA                       | ug/kg   | 0.4   |        | 35J         | 8     | 37              | 60-155           |            |     |            |
| NMeFOSA                     | ug/kg   | 0.2   |        | 17J         | 8     | 37              | 70-155           |            |     |            |
| NMeFOSAA                    | ug/kg   | 0.2   | 0      | .22         | 11    | 2               | 65-155           |            |     |            |
| NMeFOSE                     | ua/ka   | 2     | 1      | .8J         | ç     | 92              | 70-140           |            |     |            |
| PFBA                        | ua/ka   | 0.8   | 0      | .83         | 1(    | )3              | 70-140           |            |     |            |
| PFBS                        | ua/ka   | 0.18  |        | 17J         | ç     | 95              | 65-145           |            |     |            |
| PFDA                        | ua/ka   | 0.2   |        | 18.J        | 8     | 39              | 70-155           |            |     |            |
| PFDoA                       | ua/ka   | 0.2   |        | 17.J        | 8     | 37              | 70-150           |            |     |            |
| PFDoS                       | ug/kg   | 0.19  | -      | 18.1        | (     | )1<br>)1        | 25-160           |            |     |            |
| PEDS                        | ug/kg   | 0.19  |        | 16.1        | ş     | 85              | 40-155           |            |     |            |
| PEESA                       | ug/kg   | 0.10  |        | 32.1        |       | 20              | 70-140           |            |     |            |
| PFHnA                       | ug/kg   | 0.00  |        | 171         | \$    | 87              | 65-145           |            |     |            |
| PEHoS                       | ug/kg   | 0.2   | •      | 181         | (     | אנ<br>אנ        | 65-155           |            |     |            |
| PFHyA                       | ug/kg   | 0.10  |        | 101         |       | )3<br>)0        | 65-140           |            |     |            |
| DEHvS                       | ug/kg   | 0.2   |        | 161         | s     | 28              | 60-150           |            |     |            |
| DEMBA                       | ug/kg   | 0.10  |        | 361         |       | 00              | 60-150<br>60-150 |            |     |            |
|                             | ug/kg   | 0.4   |        | 271         | (     | 20              | 20 140           |            |     |            |
|                             | ug/kg   | 0.4   |        | 101         | (     | 2               | 70-155           |            |     |            |
| DENS                        | ug/kg   | 0.2   | •      | 190         | (     | 5               | 55 140           |            |     |            |
| PENS<br>DECA                | ug/kg   | 0.19  | -      | 100         |       | 55<br>17        | 70 150           |            |     |            |
| PFOA                        | ug/kg   | 0.2   | -      | 19J<br>10 I |       | <i>וו</i><br>דו | 70-150           |            |     |            |
| PF03                        | ug/kg   | 0.19  | •      | 10J         |       | 97<br>54        | 70 140           |            |     |            |
|                             | ug/kg   | 0.2   |        | 10J<br>27 I |       | 21<br>2         | 60 150           |            |     |            |
|                             | ug/kg   | 0.4   |        | 57J         |       | 13<br>10        | 00-150<br>FF 400 |            |     |            |
|                             | ug/kg   | 0.19  |        | 190         | 10    | 10              | 55-160           |            |     |            |
|                             | ug/kg   | 0.2   |        | 19J         | ç     | <i>1</i> 4      | 65-150           |            |     |            |
|                             | ug/kg   | 0.2   |        | 18J         | 3     | 38              | 65-150           |            |     |            |
| PFUnA                       | ug/kg   | 0.2   |        | 18J         | 8     | 38              | 70-155           |            |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |  |  |  |  |  |
|-------------------|------------------|--|--|--|--|--|
| Pace Project No.: | 10703542         |  |  |  |  |  |

| LABORATORY CONTROL SAMPLE: | 5040729 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 13C2-PFDoA (S)             | %.      |       |        | 87    | 40-130 |            |
| 13C2-PFTA (S)              | %.      |       |        | 83    | 20-130 |            |
| 13C24:2FTS (S)             | %.      |       |        | 107   | 40-165 |            |
| 13C26:2FTS (S)             | %.      |       |        | 108   | 40-215 |            |
| 13C28:2FTS (S)             | %.      |       |        | 103   | 40-275 |            |
| 13C3-PFBS (S)              | %.      |       |        | 100   | 40-135 |            |
| 13C3-PFHxS (S)             | %.      |       |        | 101   | 40-130 |            |
| 13C3HFPO-DA (S)            | %.      |       |        | 97    | 40-130 |            |
| 13C4-PFBA (S)              | %.      |       |        | 95    | 8-130  |            |
| 13C4-PFHpA (S)             | %.      |       |        | 95    | 40-130 |            |
| 13C5-PFHxA (S)             | %.      |       |        | 93    | 40-130 |            |
| 13C5-PFPeA (S)             | %.      |       |        | 95    | 35-130 |            |
| 13C6-PFDA (S)              | %.      |       |        | 94    | 40-130 |            |
| 13C7-PFUdA (S)             | %.      |       |        | 93    | 40-130 |            |
| 13C8-PFOA (S)              | %.      |       |        | 90    | 40-130 |            |
| 13C8-PFOS (S)              | %.      |       |        | 99    | 40-130 |            |
| 13C8-PFOSA (S)             | %.      |       |        | 86    | 40-130 |            |
| 13C9-PFNA (S)              | %.      |       |        | 93    | 40-130 |            |
| d3-MeFOSAA (S)             | %.      |       |        | 87    | 40-135 |            |
| d3-NMeFOSA (S)             | %.      |       |        | 63    | 10-130 |            |
| d5-EtFOSAA (S)             | %.      |       |        | 90    | 40-150 |            |
| d5-NEtFOSA (S)             | %.      |       |        | 63    | 10-130 |            |
| d7-NMeFOSE (S)             | %.      |       |        | 66    | 20-130 |            |
| d9-NEtFOSE (S)             | %.      |       |        | 67    | 15-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: Rye Turf Project Pace Project No.: 10703542

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

S0 Surrogate recovery outside laboratory control limits.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:<br>Pace Project No.: | Rye Turf Project<br>10703542 |                 |          |                   |                     |
|-------------------------------|------------------------------|-----------------|----------|-------------------|---------------------|
| Lab ID                        | Sample ID                    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
| 10703542001                   | INFILL                       | EPA 1633 DRAFT  | 964554   | EPA 1633 DRAFT    | 969124              |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

September 24, 2024

Kirsten Hogberg Pace Analytical Laboratory - MN 1700 Elm Street Minneapolis, MN 55414

Project Location: Rye Turf Project Client Job Number: Project Number: 10703542 Laboratory Work Order Number: 24I2345

Enclosed are results of analyses for samples as received by the laboratory on September 17, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

the Start 

Rebecca Faust Project Manager

## Table of Contents

| Sample Summary                                  | 3  |
|-------------------------------------------------|----|
| Case Narrative                                  | 4  |
| Sample Results                                  | 5  |
| 24I2345-01                                      | 5  |
| Sample Preparation Information                  | 6  |
| QC Data                                         | 7  |
| Fluorine by Combustion Ion Chromatography (CIC) | 7  |
| B386632                                         | 7  |
| Flag/Qualifier Summary                          | 8  |
| Certifications                                  | 9  |
| Chain of Custody/Sample Receipt                 | 10 |


\_

|                               | 39 Spruce                   | Street * East Longm   | eadow, MA 01028 * FAX 413/525-6405 * TEI           | . 413/525-2332 |                        |  |
|-------------------------------|-----------------------------|-----------------------|----------------------------------------------------|----------------|------------------------|--|
| Pace Analytical Laboratory    | - MN                        |                       |                                                    |                |                        |  |
| 1700 Elm Street               |                             |                       |                                                    |                | REPORT DATE: 9/24/2024 |  |
| Minneapolis, MN 55414         |                             |                       | PURCHASE ORDER NUMBER                              | ł:             |                        |  |
| ATTN: Kirsten Hogberg         |                             |                       |                                                    |                |                        |  |
|                               |                             |                       | PROJECT NUMBER: 1070                               | 3542           |                        |  |
| ANALYTICAL SUMMARY            |                             |                       |                                                    |                |                        |  |
|                               |                             |                       | WORK C                                             | ORDER NUMBER:  | 2412345                |  |
| The results of analyses perfe | ormed on the following samp | les submitted to CON- | TEST, a Pace Analytical Laboratory, are found in t | his report.    |                        |  |
| PROJECT LOCATION:             | Rye Turf Project            |                       |                                                    |                |                        |  |
|                               |                             |                       |                                                    |                |                        |  |
| FIELD SAMPLE #                | LAB ID:                     | MATRIX                | SAMPLE DESCRIPTION                                 | TEST           | SUB LAB                |  |
| INFILL                        | 24I2345-01                  | Product/Solid         |                                                    | Total Fluorin  | ne by CIC              |  |



CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lua Wattheasta

Lisa A. Worthington Technical Representative

Page 20 of 29 Page 4 of 13



| Total Fluorine (TF)                | 5.7         | 4.0            | mg/Kg               | 1            | 8.              | Total Fluorine by CIC | 9/19/24          | 9/23/24 17:46         | 15      |
|------------------------------------|-------------|----------------|---------------------|--------------|-----------------|-----------------------|------------------|-----------------------|---------|
| Analyte                            | Results     | RL             | Units               | Dilution     | Flag/Qual       | Method                | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|                                    |             | Fluori         | ne by Combustion Io | n Chromatog  | raphy (CIC)     |                       |                  |                       |         |
| Sample Matrix: Product/Solid       |             |                |                     |              |                 |                       |                  |                       |         |
| Sample ID: 24I2345-01              |             |                |                     |              |                 |                       |                  |                       |         |
| Sample #: INFILL                   | Sa          | mpled: 8/7/20  | 024 12:13           |              |                 |                       |                  |                       |         |
| Date Received: 9/17/2024 Field     |             |                |                     |              |                 |                       |                  |                       |         |
| Project Location: Rye Turf Project | Sa          | mple Descript  | ion:                |              |                 |                       | Work Orde        | er: 24I2345           |         |
|                                    | 39 Spruce S | treet * East I | ongmeadow, MA 0     | 1028 * FAX 4 | 13/525-6405 * T | EL. 413/525-2332      |                  |                       |         |



#### Sample Extraction Data

Prep Method:EPA 1621 Analytical Method:Total Fluorine by CIC

| Lab Number [Field ID] | Batch   | Initial [mg] | Final [Boat] | Date     |
|-----------------------|---------|--------------|--------------|----------|
| 24I2345-01 Infill     | B386632 | 49.6         | 1.00         | 09/19/24 |



#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332 QUALITY CONTROL

#### Fluorine by Combustion Ion Chromatography (CIC) - Quality Control

| Analyte                  | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|--------------------------|--------|--------------------|-------|----------------|------------------|---------------|----------------|-------|--------------|-------|
| Batch B386632 - EPA 1621 |        |                    |       |                |                  |               |                |       |              |       |
| Blank (B386632-BLK1)     |        |                    |       | Prepared: 09   | /19/24 Anal      | yzed: 09/23/2 | .4             |       |              |       |
| Total Fluorine (TF)      | ND     | 4.0                | mg/Kg |                |                  |               |                |       |              |       |
| LCS (B386632-BS1)        |        |                    |       | Prepared: 09   | /19/24 Anal      | yzed: 09/23/2 | .4             |       |              |       |
| Total Fluorine (TF)      | 18.0   | 4.0                | mg/Kg | 18.87          |                  | 95.2          | 0-200          |       |              |       |
| LCS Dup (B386632-BSD1)   |        |                    |       | Prepared: 09   | /19/24 Anal      | yzed: 09/23/2 | 24             |       |              |       |
| Total Fluorine (TF)      | 18.1   | 4.0                | mg/Kg | 18.79          |                  | 96.2          | 0-200          | 0.702 |              |       |



#### FLAG/QUALIFIER SUMMARY

- \* QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit is at the level of quantitation (LOQ)
- DL Detection Limit is the lower limit of detection determined by the MDL study
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.



|                                                                                                            | CERTIFICATIONS                                |                |        |         |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|--------|---------|--|--|--|
| Certified Analyse                                                                                          | Certified Analyses included in this Report    |                |        |         |  |  |  |
| Analyte                                                                                                    |                                               | Certifications |        |         |  |  |  |
| No certified Anal                                                                                          | No certified Analyses included in this Report |                |        |         |  |  |  |
|                                                                                                            |                                               |                |        |         |  |  |  |
| Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations: |                                               |                |        |         |  |  |  |
| Code                                                                                                       | Description                                   |                | Number | Expires |  |  |  |



3090 Sterling Circle, Suite 102 Boulder, Colorado 80301 BrockUSA.com / 303.544.5800

Regarding the PFAS detected on the BrockFILL, it is difficult to say where it may have originated. When we did our previous testing with Eurofins, this compound (NFDHA) was not part of the analysis. It was most likely picked up from the environment, as we do not intentionally add anything to the wood at any point during our manufacturing process. The attached diagram outlines the manufacturing process for BrockFILL. The only operations associated with the process are the chipping of whole pine logs, drying of fresh chips, conveying in-process material (by belt conveyor, drag chain, or pneumatic transfer lines), and performing mechanical size reduction and mechanical separations on the material to achieve the finished product. At no point in the process are any chemical compounds intentionally added to the wood. Based on the information I have found, NFDHA has been used in aqueous film-forming firefighting foams (AFFFs) - one reference pointed specifically to a formulation/product called "FN-3". Beyond that, it is difficult to find much information about the uses of this compound. Pine trees (and essentially any plants) can take up PFAS from the soil and the air, so it could have taken it up while growing if NFDHA was present in the local environment. There's also a chance that some piece of equipment used when felling the trees or transporting the logs had previously been on fire and was exposed to this compound. Additionally, there is always the possibility of contamination during sampling or transport. Regarding the report for total fluorine in Powerbase YSR, JSP (the company that molds the PBYSR panels) has told us that they do not use fluorinated polymer processing aids or fluorinated mold release agents (which would show up as organic fluorine). In talking with JSP about the possible sources of fluorine, these were the things they saw as a possibility (in order of increasing probability):

- Water. Possibly from trace minerals, fluoride added to the water (assuming elemental Fluorine is detected), or other water treatment chemicals. Water is used when extruding the mini-pellets (prior to expanding into foam beads), when expanding the mini-pellets into foam beads, and is also used during molding (as steam – but I would not expect the steam to contain much, if any, fluoride).
- 2. Nucleation additive (the compound used does not intentionally contain fluorine, but it could have trace minerals present that contain fluorine).
- 3. Suspension Agent. The suspension agent they use contains mica, which may have traces of elemental Fluorine. Depending on the source of the mica, the chemical composition can range from Al<sub>2</sub>K<sub>2</sub>O<sub>6</sub>Si (mostly Potassium, Alumina/Aluminum Oxide, Silicon Dioxide and other Oxides) to KAl<sub>2</sub>(AlSi<sub>3</sub>O<sub>10</sub>)(F,OH)<sub>2</sub>, or (KF)<sub>2</sub>(Al<sub>2</sub>O<sub>3</sub>)<sub>3</sub>(SiO<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O) depending on whether it is hydrated or not. So it is possible that the mica contains traces of elemental Fluorine.

Most of these would be expected to show up as inorganic fluorine – the report just says "Total Fluorine" (does not distinguish between organic and inorganic fluorine), so it's possible that the values they saw for total fluorine are because of one or more of the reasons listed above.

We hope this letter meets your needs. Please let us know if we can be of further assistance.

Best regards,

Tom Murphy, Ph.D. Director of Engineering Brock USA

ATTACHMENTS:

1. BrockFILL Process Diagram

#### 1. BrockFILL Process Diagram





September 09, 2024

# Shockpad Results

Ryan Coyne City of Rye 1051 Boston Post Road Rye, NY 10580

RE: Project: Rye Turf Project Pace Project No.: 10703241

Dear Ryan Coyne:

Enclosed are the analytical results for sample(s) received by the laboratory on August 08, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kigh Hegher

Kirsten Hogberg kirsten.hogberg@pacelabs.com (612)607-1700 Project Manager

Enclosures





Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: Rye Turf Project Pace Project No.: 10703241

#### Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 GMP+ Certification #: GMP050884 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 ISO/IEC 17025 Certification via A2LA #: 2926.01 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification via A2LA #: 2926.01 USDA Permit #: P330-19-00208



10703241001

Shock Pad

#### SAMPLE SUMMARY

08/02/24 09:00

08/08/24 08:50

Solid

| Lab ID                        | Sample ID                    | Matrix | Date Collected | Date Received |
|-------------------------------|------------------------------|--------|----------------|---------------|
| Project:<br>Pace Project No.: | Rye Turf Project<br>10703241 |        |                |               |

| REPORT ( | OF LABOR | ATORY A | ANALYSIS |
|----------|----------|---------|----------|
| REPORT   | OF LABOR | ATORY A | ANALYSIS |



#### SAMPLE ANALYTE COUNT

Project:Rye Turf ProjectPace Project No.:10703241

| Lab ID      | Sample ID | Method         | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|----------------|----------|----------------------|------------|
| 10703241001 | Shock Pad | EPA 1633 DRAFT | MJL      | 64                   | PASI-M     |

PASI-M = Pace Analytical Services - Minneapolis



#### ANALYTICAL RESULTS

Project: Rye Turf Project

Pace Project No.: 10703241

| Sample: Shock Pad            | Lab ID:      | 107032410     | 01 Collected    | l: 08/02/24 | 4 09:00  | Received: 08/    | 08/24 08:50 Ma | atrix: Solid |      |
|------------------------------|--------------|---------------|-----------------|-------------|----------|------------------|----------------|--------------|------|
| Results reported on a "wet-w | eight" basis |               |                 |             |          |                  |                |              |      |
| -                            | -            |               | Report          |             |          |                  |                |              |      |
| Parameters                   | Results      | Units         | Limit           | MDL         | DF       | Prepared         | Analyzed       | CAS No.      | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EP/   | A 1633 DRAFT    | Preparati   | on Met   | hod: EPA 1633 DF | RAFT           |              |      |
|                              | Initial Volu | me/Weight:    | 0.849 g Final \ | Volume/We   | eight: 5 | mL               |                |              |      |
|                              | Pace Anal    | vtical Servic | es - Minneapoli | is          |          |                  |                |              |      |
|                              |              | ua/ka         | 47              | 1 0         | 1        | 00/20/24 12:26   | 00/20/24 12:55 | 762051 02 0  |      |
| 2:2 ETCA                     |              | ug/kg         | 4.7             | 1.3         | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 256 02 5     |      |
| 3.3 FTCA                     |              | ug/kg         | 5.9<br>4 7      | 2.0         | 1        | 00/20/24 12:30   | 08/29/24 12:55 | 757124 72 4  |      |
| 4.2 FTCA                     |              | ug/kg         | 4.7             | 5.6         | 1        | 00/20/24 12:30   | 08/29/24 12:55 | 01/627 /0 2  |      |
| 5.3 FTCA                     |              | ug/kg         | 29.4            | 5.0<br>1.0  | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 914037-49-3  |      |
| 0.2 F 13<br>7:2 ETCA         |              | ug/kg         | 4.7             | 1.U<br>5.1  | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 21019-97-2   |      |
| 8:2 FTS                      |              | ug/kg         | 29.4            | 1.2         | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 30108-34-4   |      |
|                              |              | ug/kg         | 4.7             | 1.2         | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 756/26-58-1  |      |
|                              |              | ug/kg         | 4.7             | 0.00        | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 010005-14-4  |      |
|                              |              | ug/kg         | 4.7             | 0.99        | 1        | 00/20/24 12:30   | 08/29/24 12:55 | 12252 12 6   |      |
|                              |              | ug/kg         | 4.7             | 0.21        | 1        | 00/20/24 12:30   | 08/29/24 12:55 | 2001 50 6    |      |
| NETEOSA                      |              | ug/kg         | 1.2             | 0.01        | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 4151-50-2    |      |
| NETEOSE                      |              | ug/kg         | 11.2            | 34          | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 1601-00-2    |      |
|                              |              | ug/kg         | 2.4             | 0.5         | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 151772-58-6  |      |
|                              |              | ug/kg         | 1.7             | 0.00        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 2355-31-9    |      |
|                              |              | ug/kg         | 1.2             | 0.40        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 31506-32-8   |      |
| NMeFOSE                      |              | ug/kg         | 1.2             | 43          | 1        | 08/28/24 12:30   | 08/29/24 12:55 | 24448-09-7   |      |
| PERS                         | ND           | ug/kg         | 12              | 0.27        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 375-73-5     |      |
| PEDA                         |              | ug/kg         | 1.2             | 0.27        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 335-76-2     |      |
| PEHyA                        |              | ug/kg         | 1.2             | 0.20        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 307-24-4     |      |
| PEBA                         |              | ug/kg         | 4.7             | 13          | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 375-22-4     |      |
| PEDS                         | ND           | ug/kg         | 1.2             | 0.35        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 335-77-3     |      |
| PEDoS                        | ND           | ug/kg         | 1.2             | 0.00        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 79780-39-5   |      |
| PEESA                        | ND           | ug/kg         | 2.4             | 0.02        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 113507-82-7  |      |
| PEHnS                        | ND           | ug/kg         | 1.4             | 0.40        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 375-92-8     |      |
| PEMBA                        | ND           | ug/kg         | 2.4             | 0.60        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 863090-89-5  |      |
| PEMPA                        | ND           | ug/kg         | 2.4             | 0.04        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 377-73-1     |      |
| PENS                         | ND           | ug/kg         | 12              | 0.31        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 68259-12-1   |      |
| PEOSA                        | ND           | ug/kg         | 1.2             | 0.26        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 754-91-6     |      |
| PEPeA                        | ND           | ug/kg         | 2.4             | 0.63        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 2706-90-3    |      |
| PFPeS                        | ND           | ug/kg         | 12              | 0.36        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 2706-91-4    |      |
| PEDoA                        | ND           | ua/ka         | 1.2             | 0.29        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 307-55-1     |      |
| PEHpA                        | ND           | ua/ka         | 1.2             | 0.34        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 375-85-9     |      |
| PFHxS                        | ND           | ua/ka         | 1.2             | 0.30        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 355-46-4     |      |
| PENA                         | ND           | ua/ka         | 1.2             | 0.35        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 375-95-1     |      |
| PEOS                         | ND           | ua/ka         | 1.2             | 0.29        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 1763-23-1    |      |
| PFOA                         | ND           | ug/ka         | 1.2             | 0.42        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 335-67-1     |      |
| PFTeDA                       | ND           | ug/ka         | 1.2             | 0.35        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 376-06-7     |      |
| PFTrDA                       | ND           | ug/ka         | 1.2             | 0.28        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 72629-94-8   |      |
| PFUnA                        | ND           | ug/ka         | 1.2             | 0.32        | 1        | 08/28/24 12:36   | 08/29/24 12:55 | 2058-94-8    |      |
| Surrogates                   |              |               |                 | 2.02        |          |                  |                |              |      |
| 13C2-PFDoA (S)               | 84           | %.            | 40-130          |             | 1        | 08/28/24 12:36   | 08/29/24 12:55 |              |      |
| 13C3HFPO-DA (S)              | 90           | %.            | 40-130          |             | 1        | 08/28/24 12:36   | 08/29/24 12:55 |              |      |



#### ANALYTICAL RESULTS

Project: Rye Turf Project

Pace Project No.: 10703241

| Sample: Shock Pad            | Lab ID:      | 1070324100   | 01 Collecte   | d: 08/02/2 | 24 09:00  | Received: 08/    | 08/24 08:50 Ma | trix: Solid |      |
|------------------------------|--------------|--------------|---------------|------------|-----------|------------------|----------------|-------------|------|
| Results reported on a "wet-w | eight" basis |              |               |            |           |                  |                |             |      |
|                              |              |              | Report        |            |           |                  |                |             |      |
| Parameters                   | Results      | Units        | _ Limit       | MDL        | DF        | Prepared         | Analyzed       | CAS No.     | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EP/  | A 1633 DRAF   | F Prepara  | tion Meth | nod: EPA 1633 DF | RAFT           |             |      |
|                              | Initial Volu | me/Weight:   | 0.849 g Final | Volume/W   | /eight: 5 | mL               |                |             |      |
|                              | Pace Anal    | tical Servic | es - Minneapo | lis        |           |                  |                |             |      |
| Surrogates                   |              |              |               |            |           |                  |                |             |      |
| 13C3-PFBS (S)                | 94           | %.           | 40-135        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C3-PFHxS (S)               | 98           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C4-PFBA (S)                | 73           | %.           | 8-130         |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C4-PFHpA (S)               | 92           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C5-PFHxA (S)               | 90           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C5-PFPeA (S)               | 87           | %.           | 35-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C6-PFDA (S)                | 94           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C8-PFOA (S)                | 90           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C8-PFOS (S)                | 88           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C8-PFOSA (S)               | 84           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C9-PFNA (S)                | 88           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d3-MeFOSAA (S)               | 72           | %.           | 40-135        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d3-NMeFOSA (S)               | 78           | %.           | 10-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d5-EtFOSAA (S)               | 76           | %.           | 40-150        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d5-NEtFOSA (S)               | 79           | %.           | 10-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d7-NMeFOSE (S)               | 93           | %.           | 20-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| d9-NEtFOSE (S)               | 85           | %.           | 15-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C2-PFTA (S)                | 81           | %.           | 20-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C7-PFUdA (S)               | 90           | %.           | 40-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C24:2FTS (S)               | 93           | %.           | 40-165        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C26:2FTS (S)               | 116          | %.           | 40-215        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |
| 13C28:2FTS (S)               | 86           | %.           | 40-275        |            | 1         | 08/28/24 12:36   | 08/29/24 12:55 |             |      |



Rye Turf Project

Project:

#### **QUALITY CONTROL DATA**

| Pace Project No.: 10703241          |                |                 |                |                  |                     |            |
|-------------------------------------|----------------|-----------------|----------------|------------------|---------------------|------------|
| QC Batch: 963415                    | Analysis Met   | hod: EPA        | EPA 1633 DRAFT |                  |                     |            |
| QC Batch Method: EPA 1633 DRAFT     |                | Analysis Des    | cription: 1633 | 3 SL             |                     |            |
|                                     |                | Laboratory:     | Pace           | e Analytical Ser | vices - Minneapolis |            |
| Associated Lab Samples: 10703241001 |                |                 |                |                  |                     |            |
| METHOD BLANK: 5035079               |                | Matrix:         | Solid          |                  |                     |            |
| Associated Lab Samples: 10703241001 |                |                 |                |                  |                     |            |
| Parameter                           | Units          | Blank<br>Result | Reporting      | MDI              | Analyzed            | Qualifiers |
|                                     |                |                 |                | 0.22             | 08/20/24 06:40      |            |
| 3:3 FTCA                            | ug/kg<br>ug/kg |                 | 1.0            | 0.22             | 08/29/24 00.40      |            |
| 4:2 FTS                             | ug/kg<br>ug/kg |                 | 0.80           | 0.04             | 08/29/24 06:40      |            |
| 5:3 FTCA                            | ug/kg<br>ug/kg | ND              | 5.0            | 0.10             | 08/29/24 06:40      |            |
| 6:2 FTS                             | ug/kg<br>ug/kg | ND              | 0.80           | 0.18             | 08/29/24 06:40      |            |
| 7:3 FTCA                            | ua/ka          | ND              | 5.0            | 0.87             | 08/29/24 06:40      |            |
| 8:2 FTS                             | ug/kg          | ND              | 0.80           | 0.21             | 08/29/24 06:40      |            |
| 9CI-PE3ONS                          | ua/ka          | ND              | 0.80           | 0.22             | 08/29/24 06:40      |            |
| ADONA                               | ua/ka          | ND              | 0.80           | 0.17             | 08/29/24 06:40      |            |
| HFPO-DA                             | ua/ka          | ND              | 0.80           | 0.23             | 08/29/24 06:40      |            |
| NEtFOSA                             | ua/ka          | ND              | 0.20           | 0.068            | 08/29/24 06:40      |            |
| NEtFOSAA                            | ua/ka          | ND              | 0.20           | 0.052            | 08/29/24 06:40      |            |
| NEtFOSE                             | ua/ka          | ND              | 2.0            | 0.58             | 08/29/24 06:40      |            |
| NFDHA                               | ug/kg          | ND              | 0.40           | 0.11             | 08/29/24 06:40      |            |
| NMeFOSA                             | ug/kg          | ND              | 0.20           | 0.065            | 08/29/24 06:40      |            |
| NMeFOSAA                            | ug/kg          | ND              | 0.20           | 0.077            | 08/29/24 06:40      |            |
| NMeFOSE                             | ug/kg          | ND              | 2.0            | 0.73             | 08/29/24 06:40      |            |
| PFBA                                | ug/kg          | ND              | 0.80           | 0.23             | 08/29/24 06:40      |            |
| PFBS                                | ug/kg          | ND              | 0.20           | 0.045            | 08/29/24 06:40      |            |
| PFDA                                | ug/kg          | ND              | 0.20           | 0.045            | 08/29/24 06:40      |            |
| PFDoA                               | ug/kg          | ND              | 0.20           | 0.050            | 08/29/24 06:40      |            |
| PFDoS                               | ug/kg          | ND              | 0.20           | 0.054            | 08/29/24 06:40      |            |
| PFDS                                | ug/kg          | ND              | 0.20           | 0.059            | 08/29/24 06:40      |            |
| PFEESA                              | ug/kg          | ND              | 0.40           | 0.081            | 08/29/24 06:40      |            |
| PFHpA                               | ug/kg          | ND              | 0.20           | 0.057            | 08/29/24 06:40      |            |
| PFHpS                               | ug/kg          | ND              | 0.20           | 0.052            | 08/29/24 06:40      |            |
| PFHxA                               | ug/kg          | ND              | 0.20           | 0.058            | 08/29/24 06:40      |            |
| PFHxS                               | ug/kg          | ND              | 0.20           | 0.051            | 08/29/24 06:40      |            |
| PFMBA                               | ug/kg          | ND              | 0.40           | 0.11             | 08/29/24 06:40      |            |
| PFMPA                               | ug/kg          | ND              | 0.40           | 0.13             | 08/29/24 06:40      |            |
| PFNA                                | ug/kg          | ND              | 0.20           | 0.060            | 08/29/24 06:40      |            |
| PFNS                                | ug/kg          | ND              | 0.20           | 0.053            | 08/29/24 06:40      |            |
| PFOA                                | ug/kg          | ND              | 0.20           | 0.071            | 08/29/24 06:40      |            |
| PFOS                                | ug/kg          | ND              | 0.20           | 0.050            | 08/29/24 06:40      |            |
| PFOSA                               | ug/kg          | ND              | 0.20           | 0.044            | 08/29/24 06:40      |            |
| PFPeA                               | ug/kg          | ND              | 0.40           | 0.11             | 08/29/24 06:40      |            |
| PFPeS                               | ug/kg          | ND              | 0.20           | 0.060            | 08/29/24 06:40      |            |
| PFTeDA                              | ug/kg          | ND              | 0.20           | 0.060            | 08/29/24 06:40      |            |
| PFTrDA                              | ug/kg          | ND              | 0.20           | 0.048            | 08/29/24 06:40      |            |
| PFUnA                               | ug/kg          | ND              | 0.20           | 0.054            | 08/29/24 06:40      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| METHOD BLANK: 5035079               |        | Matrix: | Solid     |     |                |            |
|-------------------------------------|--------|---------|-----------|-----|----------------|------------|
| Associated Lab Samples: 10703241001 |        |         |           |     |                |            |
| Deremeter                           | Linita | Blank   | Reporting |     | Apolyzod       | Qualifiara |
|                                     |        | Result  |           | MDL |                | Quaimers   |
| 13C2-PFDoA (S)                      | %.     | 78      | 40-130    |     | 08/29/24 06:40 |            |
| 13C2-PFTA (S)                       | %.     | 72      | 20-130    |     | 08/29/24 06:40 |            |
| 13C24:2FTS (S)                      | %.     | 92      | 40-165    |     | 08/29/24 06:40 |            |
| 13C26:2FTS (S)                      | %.     | 123     | 40-215    |     | 08/29/24 06:40 |            |
| 13C28:2FTS (S)                      | %.     | 71      | 40-275    |     | 08/29/24 06:40 |            |
| 13C3-PFBS (S)                       | %.     | 102     | 40-135    |     | 08/29/24 06:40 |            |
| 13C3-PFHxS (S)                      | %.     | 103     | 40-130    |     | 08/29/24 06:40 |            |
| 13C3HFPO-DA (S)                     | %.     | 101     | 40-130    |     | 08/29/24 06:40 |            |
| 13C4-PFBA (S)                       | %.     | 105     | 8-130     |     | 08/29/24 06:40 |            |
| 13C4-PFHpA (S)                      | %.     | 99      | 40-130    |     | 08/29/24 06:40 |            |
| 13C5-PFHxA (S)                      | %.     | 97      | 40-130    |     | 08/29/24 06:40 |            |
| 13C5-PFPeA (S)                      | %.     | 98      | 35-130    |     | 08/29/24 06:40 |            |
| 13C6-PFDA (S)                       | %.     | 93      | 40-130    |     | 08/29/24 06:40 |            |
| 13C7-PFUdA (S)                      | %.     | 89      | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOA (S)                       | %.     | 98      | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOS (S)                       | %.     | 92      | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOSA (S)                      | %.     | 78      | 40-130    |     | 08/29/24 06:40 |            |
| 13C9-PFNA (S)                       | %.     | 94      | 40-130    |     | 08/29/24 06:40 |            |
| d3-MeFOSAA (S)                      | %.     | 77      | 40-135    |     | 08/29/24 06:40 |            |
| d3-NMeFOSA (S)                      | %.     | 55      | 10-130    |     | 08/29/24 06:40 |            |
| d5-EtFOSAA (S)                      | %.     | 78      | 40-150    |     | 08/29/24 06:40 |            |
| d5-NEtFOSA (S)                      | %.     | 52      | 10-130    |     | 08/29/24 06:40 |            |
| d7-NMeFOSE (S)                      | %.     | 58      | 20-130    |     | 08/29/24 06:40 |            |
| d9-NEtFOSE (S)                      | %.     | 61      | 15-130    |     | 08/29/24 06:40 |            |

| ABORATORY CONTROL SAMPLE & LCSD: 5035080 5035081 |       |       |        |        |       |       |        |     |     |            |  |  |
|--------------------------------------------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------------|--|--|
|                                                  |       | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |  |  |
| Parameter                                        | Units | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |  |  |
| 11CI-PF3OUdS                                     | ug/kg | 9.1   | 7.6    | 8.9    | 84    | 98    | 45-160 | 15  | 30  |            |  |  |
| 3:3 FTCA (                                       | ug/kg | 12    | 11.8   | 11.5   | 99    | 96    | 45-130 | 3   | 30  |            |  |  |
| 4:2 FTS                                          | ug/kg | 9     | 9.3    | 9.3    | 104   | 103   | 60-150 | 0   | 30  |            |  |  |
| 5:3 FTCA u                                       | ug/kg | 60    | 63.2   | 60.1   | 105   | 100   | 60-130 | 5   | 30  |            |  |  |
| 6:2 FTS                                          | ug/kg | 9.1   | 10     | 9.9    | 109   | 108   | 55-200 | 1   | 30  |            |  |  |
| 7:3 FTCA (                                       | ug/kg | 60    | 59.6   | 58.7   | 99    | 98    | 60-150 | 1   | 30  |            |  |  |
| 8:2 FTS                                          | ug/kg | 9.2   | 10.3   | 9.7    | 111   | 105   | 70-150 | 5   | 30  |            |  |  |
| 9CI-PF3ONS                                       | ug/kg | 9     | 9.0    | 9.5    | 100   | 106   | 70-150 | 5   | 30  |            |  |  |
| ADONA u                                          | ug/kg | 9.1   | 9.2    | 9.2    | 101   | 101   | 70-160 | 0   | 30  |            |  |  |
| HFPO-DA u                                        | Jg/kg | 9.6   | 10.3   | 10.1   | 107   | 106   | 70-145 | 1   | 30  |            |  |  |
| NEtFOSA u                                        | ug/kg | 2.4   | 2.3    | 2.3    | 98    | 96    | 70-140 | 2   | 30  |            |  |  |
| NEtFOSAA u                                       | ug/kg | 2.4   | 2.4    | 2.4    | 100   | 99    | 65-165 | 1   | 30  |            |  |  |
| NEtFOSE                                          | ug/kg | 24    | 25.0   | 24.3   | 104   | 101   | 70-135 | 3   | 30  |            |  |  |
| NFDHA u                                          | ug/kg | 4.8   | 5.2    | 5.0    | 109   | 104   | 60-155 | 5   | 30  |            |  |  |
| NMeFOSA                                          | ug/kg | 2.4   | 2.4    | 2.5    | 98    | 102   | 70-155 | 4   | 30  |            |  |  |
| NMeFOSAA                                         | ug/kg | 2.4   | 2.5    | 2.4    | 106   | 100   | 65-155 | 6   | 30  |            |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ace

| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| LABORATORY CONTROL SAMPLE & LCSD: | 5035080 |       | 50     | 35081  |       |       |        |     |     |            |
|-----------------------------------|---------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                   |         | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                         | Units   | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| NMeFOSE                           | ug/kg   | 24    | 24.7   | 24.4   | 103   | 102   | 70-140 | 1   | 30  |            |
| PFBA                              | ug/kg   | 9.6   | 9.5    | 10.2   | 99    | 106   | 70-140 | 7   | 30  |            |
| PFBS                              | ug/kg   | 2.1   | 2.2    | 2.2    | 105   | 104   | 65-145 | 0   | 30  |            |
| PFDA u                            | ug/kg   | 2.4   | 2.6    | 2.5    | 108   | 104   | 70-155 | 3   | 30  |            |
| PFDoA                             | ug/kg   | 2.4   | 2.5    | 2.5    | 105   | 106   | 70-150 | 1   | 30  |            |
| PFDoS                             | ug/kg   | 2.3   | 1.7    | 2.0    | 74    | 87    | 25-160 | 16  | 30  |            |
| PFDS u                            | ug/kg   | 2.3   | 1.9    | 2.2    | 84    | 94    | 40-155 | 12  | 30  |            |
| PFEESA                            | ug/kg   | 4.3   | 4.5    | 4.5    | 106   | 105   | 70-140 | 1   | 30  |            |
| PFHpA                             | ug/kg   | 2.4   | 2.6    | 2.5    | 109   | 106   | 65-145 | 3   | 30  |            |
| PFHpS                             | ug/kg   | 2.3   | 2.4    | 2.3    | 104   | 102   | 65-155 | 2   | 30  |            |
| PFHxA                             | ug/kg   | 2.4   | 2.5    | 2.5    | 105   | 104   | 65-140 | 1   | 30  |            |
| PFHxS                             | ug/kg   | 2.2   | 2.2    | 2.3    | 101   | 106   | 60-150 | 4   | 30  |            |
| PFMBA                             | ug/kg   | 4.8   | 5.0    | 4.9    | 103   | 102   | 60-150 | 1   | 30  |            |
| PFMPA                             | ug/kg   | 4.8   | 4.9    | 4.8    | 103   | 100   | 30-140 | 3   | 30  |            |
| PFNA                              | ug/kg   | 2.4   | 2.5    | 2.5    | 106   | 104   | 70-155 | 1   | 30  |            |
| PFNS                              | ug/kg   | 2.3   | 2.1    | 2.4    | 93    | 104   | 55-140 | 11  | 30  |            |
| PFOA                              | ug/kg   | 2.4   | 2.5    | 2.5    | 103   | 106   | 70-150 | 3   | 30  |            |
| PFOS                              | ug/kg   | 2.2   | 2.2    | 2.3    | 100   | 102   | 65-160 | 3   | 30  |            |
| PFOSA                             | ug/kg   | 2.4   | 2.6    | 2.5    | 106   | 105   | 70-140 | 1   | 30  |            |
| PFPeA                             | ug/kg   | 4.8   | 5.0    | 5.0    | 105   | 105   | 60-150 | 0   | 30  |            |
| PFPeS                             | ug/kg   | 2.3   | 2.2    | 2.2    | 100   | 100   | 55-160 | 0   | 30  |            |
| PFTeDA                            | ug/kg   | 2.4   | 2.5    | 2.5    | 104   | 103   | 65-150 | 1   | 30  |            |
| PFTrDA                            | ug/kg   | 2.4   | 2.4    | 2.3    | 99    | 96    | 65-150 | 2   | 30  |            |
| PFUnA                             | ug/kg   | 2.4   | 2.5    | 2.6    | 104   | 106   | 70-155 | 2   | 30  |            |
| 13C2-PFDoA (S)                    | %.      |       |        |        | 81    | 88    | 40-130 |     |     |            |
| 13C2-PFTA (S)                     | %.      |       |        |        | 77    | 78    | 20-130 |     |     |            |
| 13C24:2FTS (S)                    | %.      |       |        |        | 94    | 86    | 40-165 |     |     |            |
| 13C26:2FTS (S)                    | %.      |       |        |        | 118   | 112   | 40-215 |     |     |            |
| 13C28:2FTS (S)                    | %.      |       |        |        | 73    | 75    | 40-275 |     |     |            |
| 13C3-PFBS (S)                     | %.      |       |        |        | 106   | 99    | 40-135 |     |     |            |
| 13C3-PFHxS (S)                    | %.      |       |        |        | 112   | 102   | 40-130 |     |     |            |
| 13C3HFPO-DA (S)                   | %.      |       |        |        | 109   | 103   | 40-130 |     |     |            |
| 13C4-PFBA (S)                     | %.      |       |        |        | 112   | 102   | 8-130  |     |     |            |
| 13C4-PFHpA (S)                    | %.      |       |        |        | 104   | 102   | 40-130 |     |     |            |
| 13C5-PFHxA (S)                    | %.      |       |        |        | 103   | 99    | 40-130 |     |     |            |
| 13C5-PFPeA (S)                    | %.      |       |        |        | 105   | 100   | 35-130 |     |     |            |
| 13C6-PFDA (S)                     | %.      |       |        |        | 100   | 100   | 40-130 |     |     |            |
| 13C7-PFUdA (S)                    | %.      |       |        |        | 91    | 93    | 40-130 |     |     |            |
| 13C8-PFOA (S)                     | %.      |       |        |        | 102   | 99    | 40-130 |     |     |            |
| 13C8-PFOS (S)                     | %.      |       |        |        | 111   | 102   | 40-130 |     |     |            |
| 13C8-PFOSA (S)                    | %.      |       |        |        | 90    | 91    | 40-130 |     |     |            |
| 13C9-PFNA (S)                     | %.      |       |        |        | 97    | 95    | 40-130 |     |     |            |
| d3-MeFOSAA (S)                    | %.      |       |        |        | 84    | 86    | 40-135 |     |     |            |
| d3-NMeFOSA (S)                    | %.      |       |        |        | 68    | 65    | 10-130 |     |     |            |
| d5-EtFOSAA (S)                    | %.      |       |        |        | 82    | 88    | 40-150 |     |     |            |
| d5-NEtFOSA (S)                    | %.      |       |        |        | 64    | 64    | 10-130 |     |     |            |
| d7-NMeFOSE (S)                    | %.      |       |        |        | 69    | 69    | 20-130 |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| LABORATORY CONTROL SAMPLE & | LCSD: 5035080 |       | 50     | )35081 |        |                 |                  |            |     |            |
|-----------------------------|---------------|-------|--------|--------|--------|-----------------|------------------|------------|-----|------------|
|                             |               | Spike | LCS    | LCSD   | LCS    | LCSE            | 0 % Rec          |            | Max |            |
| Parameter                   | Units         | Conc. | Result | Result | % Rec  | % Re            | c Limits         | RPD        | RPD | Qualifiers |
| d9-NEtFOSE (S)              | %.            |       |        |        | 68     | 7               | 1 15-130         |            |     |            |
| LABORATORY CONTROL SAMPLE:  | 5035082       |       |        |        |        |                 |                  |            |     |            |
|                             |               | Spike | LCS    |        | LCS    |                 | % Rec            |            |     |            |
| Parameter                   | Units         | Conc. | Result | :      | % Rec  |                 | Limits           | Qualifiers |     |            |
| 11CI-PF3OUdS                | ug/kg         | 0.76  |        | .65J   | 8      | 36              | 45-160           |            |     |            |
| 3:3 FTCA                    | ug/kg         | 1     |        | .85J   | 8      | 35              | 45-130           |            |     |            |
| 4:2 FTS                     | ug/kg         | 0.75  |        | .7J    | ç      | 93              | 60-150           |            |     |            |
| 5:3 FTCA                    | ug/kg         | 5     |        | 4.5J   | 8      | 39              | 60-130           |            |     |            |
| 6:2 FTS                     | ug/kg         | 0.76  |        | .79J   | 10     | )5              | 55-200           |            |     |            |
| 7:3 FTCA                    | ug/kg         | 5     |        | 4.6J   | ę      | 91              | 60-150           |            |     |            |
| 8:2 FTS                     | ug/kg         | 0.77  |        | .74J   | ę      | 96              | 70-150           |            |     |            |
| 9CI-PF3ONS                  | ug/kg         | 0.75  |        | .69J   | ç      | 92              | 70-150           |            |     |            |
| ADONA                       | ug/kg         | 0.76  |        | .74J   | ç      | 99              | 70-160           |            |     |            |
| HFPO-DA                     | ug/kg         | 0.8   |        | .76J   | ç      | 95              | 70-145           |            |     |            |
| NEtFOSA                     | ug/kg         | 0.2   |        | ND     | ç      | 98              | 70-140           |            |     |            |
| NEtFOSAA                    | ug/kg         | 0.2   |        | 0.21   | 10     | )5              | 65-165           |            |     |            |
| NEtFOSE                     | ug/kg         | 2     |        | ND     | ę      | 99              | 70-135           |            |     |            |
| NFDHA                       | ug/kg         | 0.4   |        | 0.41   | 10     | )1              | 60-155           |            |     |            |
| NMeFOSA                     | ug/kg         | 0.2   |        | .19J   | ç      | 94              | 70-155           |            |     |            |
| NMeFOSAA                    | ug/kg         | 0.2   |        | 0.25   | 12     | 26              | 65-155           |            |     |            |
| NMeFOSE                     | ua/ka         | 2     |        | ND     | ç      | 99              | 70-140           |            |     |            |
| PFBA                        | ua/ka         | 0.8   |        | 0.82   | 10     | )2              | 70-140           |            |     |            |
| PFBS                        | ua/ka         | 0.18  |        | .19J   | 10     | )5              | 65-145           |            |     |            |
| PFDA                        | ua/ka         | 0.2   |        | 0.20   | 10     | )2              | 70-155           |            |     |            |
| PFDoA                       | ug/kg         | 0.2   |        | .19.J  |        | 94              | 70-150           |            |     |            |
| PFDoS                       | ug/kg         | 0.19  |        | 18.1   | ç      | 23              | 25-160           |            |     |            |
| PEDS                        | ug/kg         | 0.19  |        | 19.1   | 10     | 0               | 40-155           |            |     |            |
| PEESA                       | ug/kg         | 0.10  |        | 34.1   | (      | 70<br>70        | 70-140           |            |     |            |
| PFHnA                       | ug/kg         | 0.00  |        |        | ,<br>( | 28              | 65-145           |            |     |            |
| PFHnS                       | ug/kg         | 0.2   |        |        | 10     | 50<br>14        | 65-155           |            |     |            |
| PFHyA                       | ug/kg         | 0.10  |        | ND     | (<br>( | 28              | 65-140           |            |     |            |
| DEHyS                       | ug/kg         | 0.2   |        | 181    |        | 26              | 60-150           |            |     |            |
| PEMBA                       | ug/kg         | 0.10  |        | 301    |        | 70              | 60-150           |            |     |            |
|                             | ug/kg         | 0.4   |        | 201    |        | יי<br>דר        | 30 140           |            |     |            |
|                             | ug/kg         | 0.4   |        | 0.20   | 10     | <i>ו</i> פ<br>1 | 70-155           |            |     |            |
| DENS                        | ug/kg         | 0.2   |        | 10.20  | (<br>( | 5               | 55 140           |            |     |            |
| PEOA                        | ug/kg         | 0.19  |        | .10J   | :<br>( | 90<br>00        | 70 150           |            |     |            |
| PFOA                        | ug/kg         | 0.2   |        | 101    | 10     | 99<br>14        | 70-150           |            |     |            |
| PF03                        | ug/kg         | 0.19  |        | .190   | 10     | )4<br>)0        | 70 1 40          |            |     |            |
|                             | ug/kg         | 0.2   |        | 201    | 10     | ∠<br>דר         | 70-140           |            |     |            |
|                             | ug/kg         | 0.4   |        | .39J   |        | <i>31</i>       | 60-150<br>EE 400 |            |     |            |
|                             | ug/kg         | 0.19  |        | .19J   | 10     | 0               | 55-160           |            |     |            |
|                             | ug/kg         | 0.2   |        | 0.21   | 10     | оl<br>ol        | 65-150           |            |     |            |
|                             | ug/kg         | 0.2   |        | .18J   | 9      | 92              | 65-150           |            |     |            |
| PFUnA                       | ug/kg         | 0.2   |        | 0.20   | 10     | 00              | 70-155           |            |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| LABORATORY CONTROL SAMPLE: | 5035082 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 13C2-PFDoA (S)             | %.      |       |        | 86    | 40-130 |            |
| 13C2-PFTA (S)              | %.      |       |        | 74    | 20-130 |            |
| 13C24:2FTS (S)             | %.      |       |        | 97    | 40-165 |            |
| 13C26:2FTS (S)             | %.      |       |        | 125   | 40-215 |            |
| 13C28:2FTS (S)             | %.      |       |        | 83    | 40-275 |            |
| 13C3-PFBS (S)              | %.      |       |        | 105   | 40-135 |            |
| 13C3-PFHxS (S)             | %.      |       |        | 111   | 40-130 |            |
| 13C3HFPO-DA (S)            | %.      |       |        | 108   | 40-130 |            |
| 13C4-PFBA (S)              | %.      |       |        | 103   | 8-130  |            |
| 13C4-PFHpA (S)             | %.      |       |        | 104   | 40-130 |            |
| 13C5-PFHxA (S)             | %.      |       |        | 104   | 40-130 |            |
| 13C5-PFPeA (S)             | %.      |       |        | 103   | 35-130 |            |
| 13C6-PFDA (S)              | %.      |       |        | 99    | 40-130 |            |
| 13C7-PFUdA (S)             | %.      |       |        | 96    | 40-130 |            |
| 13C8-PFOA (S)              | %.      |       |        | 105   | 40-130 |            |
| 13C8-PFOS (S)              | %.      |       |        | 109   | 40-130 |            |
| 13C8-PFOSA (S)             | %.      |       |        | 92    | 40-130 |            |
| 13C9-PFNA (S)              | %.      |       |        | 102   | 40-130 |            |
| d3-MeFOSAA (S)             | %.      |       |        | 89    | 40-135 |            |
| d3-NMeFOSA (S)             | %.      |       |        | 65    | 10-130 |            |
| d5-EtFOSAA (S)             | %.      |       |        | 91    | 40-150 |            |
| d5-NEtFOSA (S)             | %.      |       |        | 61    | 10-130 |            |
| d7-NMeFOSE (S)             | %.      |       |        | 70    | 20-130 |            |
| d9-NEtFOSE (S)             | %.      |       |        | 71    | 15-130 |            |
|                            |         |       |        |       |        |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 5035 | 083   |       | 5035084 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 11CI-PF3OUdS             | ug/kg    | ND          | 21.9  | 22.7  | 22.4    | 21.8   | 102   | 96    | 40-150 | 3   | 30  |      |
| 3:3 FTCA                 | ug/kg    | ND          | 29    | 30.1  | 26.9    | 26.5   | 93    | 88    | 40-150 | 1   | 30  |      |
| 4:2 FTS                  | ug/kg    | ND          | 21.8  | 22.6  | 22.7    | 22.4   | 104   | 99    | 40-150 | 1   | 30  |      |
| 5:3 FTCA                 | ug/kg    | ND          | 145   | 151   | 140     | 149    | 96    | 99    | 40-150 | 6   | 30  |      |
| 6:2 FTS                  | ug/kg    | ND          | 22.1  | 22.9  | 23.7    | 24.2   | 108   | 106   | 40-150 | 2   | 30  |      |
| 7:3 FTCA                 | ug/kg    | ND          | 145   | 151   | 140     | 145    | 97    | 97    | 40-150 | 4   | 30  |      |
| 8:2 FTS                  | ug/kg    | ND          | 22.4  | 23.2  | 22.1    | 22.6   | 99    | 97    | 40-150 | 2   | 30  |      |
| 9CI-PF3ONS               | ug/kg    | ND          | 21.8  | 22.6  | 22.6    | 22.8   | 104   | 101   | 40-150 | 1   | 30  |      |
| ADONA                    | ug/kg    | ND          | 21.9  | 22.7  | 21.2    | 21.8   | 97    | 96    | 40-150 | 3   | 30  |      |
| HFPO-DA                  | ug/kg    | ND          | 23.2  | 24.1  | 22.7    | 24.3   | 98    | 101   | 40-150 | 7   | 30  |      |
| NEtFOSA                  | ug/kg    | ND          | 5.8   | 6     | 5.8     | 5.7    | 99    | 95    | 40-150 | 0   | 30  |      |
| NEtFOSAA                 | ug/kg    | ND          | 5.8   | 6     | 5.5     | 5.8    | 94    | 96    | 40-150 | 6   | 30  |      |
| NEtFOSE                  | ug/kg    | ND          | 58.1  | 60.2  | 58.5    | 60.2   | 101   | 100   | 40-150 | 3   | 30  |      |
| NFDHA                    | ug/kg    | ND          | 11.6  | 12    | 12.5    | 12.7   | 108   | 105   | 40-150 | 1   | 30  |      |
| NMeFOSA                  | ug/kg    | ND          | 5.8   | 6     | 5.8     | 5.7    | 100   | 94    | 40-150 | 2   | 30  |      |
| NMeFOSAA                 | ug/kg    | ND          | 5.8   | 6     | 5.7     | 6.0    | 98    | 99    | 40-150 | 5   | 30  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| MATRIX SPIKE & MATRIX | X SPIKE DUPL | ICATE: 5035 | 083   |       | 5035084 |        |       |       |        |     |     |      |
|-----------------------|--------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                       |              |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                       |              | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter             | Units        | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| NMeFOSE               | ug/kg        | ND          | 58.1  | 60.2  | 61.0    | 59.5   | 105   | 99    | 40-150 | 2   | 30  |      |
| PFBA                  | ug/kg        | ND          | 23.2  | 24.1  | 24.9    | 24.0   | 106   | 99    | 40-150 | 4   | 30  |      |
| PFBS                  | ug/kg        | ND          | 5.2   | 5.3   | 5.6     | 5.3    | 108   | 100   | 40-150 | 4   | 30  |      |
| PFDA                  | ug/kg        | ND          | 5.8   | 6     | 6.1     | 6.3    | 104   | 103   | 40-150 | 3   | 30  |      |
| PFDoA                 | ug/kg        | ND          | 5.8   | 6     | 6.3     | 6.2    | 109   | 103   | 40-150 | 2   | 30  |      |
| PFDoS                 | ug/kg        | ND          | 5.6   | 5.8   | 5.3     | 5.4    | 94    | 92    | 40-150 | 1   | 30  |      |
| PFDS                  | ug/kg        | ND          | 5.6   | 5.8   | 5.6     | 5.3    | 100   | 91    | 40-150 | 6   | 30  |      |
| PFEESA                | ug/kg        | ND          | 10.3  | 10.7  | 11.0    | 11.7   | 107   | 109   | 40-150 | 6   | 30  |      |
| PFHpA                 | ug/kg        | ND          | 5.8   | 6     | 6.1     | 6.4    | 104   | 106   | 40-150 | 6   | 30  |      |
| PFHpS                 | ug/kg        | ND          | 5.5   | 5.7   | 5.4     | 5.6    | 98    | 98    | 40-150 | 4   | 30  |      |
| PFHxA                 | ug/kg        | ND          | 5.8   | 6     | 6.0     | 6.1    | 101   | 100   | 40-150 | 2   | 30  |      |
| PFHxS                 | ug/kg        | ND          | 5.3   | 5.5   | 5.5     | 5.3    | 103   | 97    | 40-150 | 2   | 30  |      |
| PFMBA                 | ug/kg        | ND          | 11.6  | 12    | 11.9    | 12.7   | 103   | 105   | 40-150 | 6   | 30  |      |
| PFMPA                 | ug/kg        | ND          | 11.6  | 12    | 11.9    | 12.4   | 102   | 103   | 40-150 | 5   | 30  |      |
| PFNA                  | ug/kg        | ND          | 5.8   | 6     | 5.9     | 6.1    | 99    | 99    | 40-150 | 3   | 30  |      |
| PFNS                  | ug/kg        | ND          | 5.6   | 5.8   | 5.4     | 5.6    | 97    | 97    | 40-150 | 4   | 30  |      |
| PFOA                  | ug/kg        | ND          | 5.8   | 6     | 6.4     | 6.5    | 107   | 104   | 40-150 | 0   | 30  |      |
| PFOS                  | ug/kg        | ND          | 5.4   | 5.6   | 5.5     | 5.8    | 98    | 99    | 40-150 | 5   | 30  |      |
| PFOSA                 | ug/kg        | ND          | 5.8   | 6     | 6.1     | 6.1    | 104   | 102   | 40-150 | 1   | 30  |      |
| PFPeA                 | ug/kg        | ND          | 11.6  | 12    | 11.9    | 12.1   | 102   | 100   | 40-150 | 2   | 30  |      |
| PFPeS                 | ug/kg        | ND          | 5.5   | 5.7   | 5.6     | 5.5    | 102   | 98    | 40-150 | 1   | 30  |      |
| PFTeDA                | ug/kg        | ND          | 5.8   | 6     | 5.8     | 6.1    | 99    | 101   | 40-150 | 6   | 30  |      |
| PFTrDA                | ug/kg        | ND          | 5.8   | 6     | 5.7     | 6.0    | 97    | 99    | 40-150 | 5   | 30  |      |
| PFUnA                 | ug/kg        | ND          | 5.8   | 6     | 6.0     | 6.4    | 104   | 106   | 40-150 | 6   | 30  |      |
| 13C2-PFDoA (S)        | %.           |             |       |       |         |        | 52    | 87    | 40-130 |     |     |      |
| 13C2-PFTA (S)         | %.           |             |       |       |         |        | 48    | 83    | 20-130 |     |     |      |
| 13C24:2FTS (S)        | %.           |             |       |       |         |        | 46    | 79    | 40-165 |     |     |      |
| 13C26:2FTS (S)        | %.           |             |       |       |         |        | 58    | 98    | 40-215 |     |     |      |
| 13C28:2FTS (S)        | %.           |             |       |       |         |        | 41    | 78    | 40-275 |     |     |      |
| 13C3-PFBS (S)         | %.           |             |       |       |         |        | 52    | 98    | 40-135 |     |     |      |
| 13C3-PFHxS (S)        | %.           |             |       |       |         |        | 55    | 105   | 40-130 |     |     |      |
| 13C3HFPO-DA (S)       | %.           |             |       |       |         |        | 55    | 100   | 40-130 |     |     |      |
| 13C4-PFBA (S)         | %.           |             |       |       |         |        | 53    | 97    | 8-130  |     |     |      |
| 13C4-PFHpA (S)        | %.           |             |       |       |         |        | 53    | 96    | 40-130 |     |     |      |
| 13C5-PFHxA (S)        | %.           |             |       |       |         |        | 52    | 94    | 40-130 |     |     |      |
| 13C5-PFPeA (S)        | %.           |             |       |       |         |        | 53    | 96    | 35-130 |     |     |      |
| 13C6-PFDA (S)         | %.           |             |       |       |         |        | 55    | 95    | 40-130 |     |     |      |
| 13C7-PFUdA (S)        | %.           |             |       |       |         |        | 54    | 90    | 40-130 |     |     |      |
| 13C8-PFOA (S)         | %.           |             |       |       |         |        | 51    | 95    | 40-130 |     |     |      |
| 13C8-PFOS (S)         | %.           |             |       |       |         |        | 61    | 95    | 40-130 |     |     |      |
| 13C8-PFOSA (S)        | %.           |             |       |       |         |        | 55    | 86    | 40-130 |     |     |      |
| 13C9-PFNA (S)         | %.           |             |       |       |         |        | 53    | 96    | 40-130 |     |     |      |
| d3-MeFOSAA (S)        | %.           |             |       |       |         |        | 48    | 72    | 40-135 |     |     |      |
| d3-NMeFOSA (S)        | %.           |             |       |       |         |        | 45    | 74    | 10-130 |     |     |      |
| d5-EtFOSAA (S)        | %.           |             |       |       |         |        | 50    | 73    | 40-150 |     |     |      |
| d5-NEtFOSA (S)        | %.           |             |       |       |         |        | 42    | 68    | 10-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:Rye Turf ProjectPace Project No.:10703241

| MATRIX SPIKE & MATRIX S | PIKE DUPLI | CATE: 5035  | 083   |       | 5035084 | 1      |       |       |        |     |       |      |
|-------------------------|------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-------|------|
|                         |            |             | MS    | MSD   |         | MOD    | MO    | MOD   | 04 D   |     |       |      |
|                         |            | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | iviax |      |
| Parameter               | Units      | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD   | Qual |
| d7-NMeFOSE (S)          | %.         |             |       |       |         |        | 48    | 78    | 20-130 |     |       |      |
| d9-NEtFOSE (S)          | %.         |             |       |       |         |        | 50    | 77    | 15-130 |     |       |      |

| MATRIX SPIKE & MATRI | X SPIKE DUPL | ICATE: 5035 | 085   |       | 5035086 | ;      |       |       |        |     |     |       |
|----------------------|--------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                      |              |             | MS    | MSD   |         |        |       |       |        |     |     |       |
|                      |              | 10702794006 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter            | Units        | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| 11CI-PF3OUdS         | ug/kg        | ND          | 40.2  | 35.8  | 16.9    | 24.2   | 42    | 68    | 40-150 | 36  | 30  | R1    |
| 3:3 FTCA             | ug/kg        | ND          | 53.3  | 47.4  | 24.6    | 45.3   | 46    | 96    | 40-150 | 59  | 30  | R1    |
| 4:2 FTS              | ug/kg        | ND          | 40    | 35.5  | 20.4    | 37.5   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| 5:3 FTCA             | ug/kg        | ND          | 266   | 237   | 139     | 249    | 52    | 105   | 40-150 | 57  | 30  | R1    |
| 6:2 FTS              | ug/kg        | ND          | 40.5  | 36    | 21.3    | 39.6   | 53    | 110   | 40-150 | 60  | 30  | R1    |
| 7:3 FTCA             | ug/kg        | ND          | 266   | 237   | 140     | 262    | 53    | 111   | 40-150 | 61  | 30  | R1    |
| 8:2 FTS              | ug/kg        | ND          | 41    | 36.5  | 20.7    | 40.7   | 50    | 112   | 40-150 | 65  | 30  | R1    |
| 9CI-PF3ONS           | ug/kg        | ND          | 40    | 35.5  | 20.8    | 34.9   | 52    | 98    | 40-150 | 51  | 30  | R1    |
| ADONA                | ug/kg        | ND          | 40.2  | 35.8  | 20.2    | 35.9   | 50    | 100   | 40-150 | 56  | 30  | R1    |
| HFPO-DA              | ug/kg        | ND          | 42.6  | 37.9  | 21.2    | 38.5   | 50    | 102   | 40-150 | 58  | 30  | R1    |
| NEtFOSA              | ug/kg        | ND          | 10.7  | 9.5   | 5.0     | 9.5    | 47    | 100   | 40-150 | 62  | 30  | R1    |
| NEtFOSAA             | ug/kg        | ND          | 10.7  | 9.5   | 5.0     | 9.6    | 47    | 101   | 40-150 | 63  | 30  | R1    |
| NEtFOSE              | ug/kg        | ND          | 107   | 94.7  | 53.6    | 96.8   | 50    | 102   | 40-150 | 58  | 30  | R1    |
| NFDHA                | ug/kg        | ND          | 21.3  | 18.9  | 10.7    | 19.5   | 50    | 103   | 40-150 | 59  | 30  | R1    |
| NMeFOSA              | ug/kg        | ND          | 10.7  | 9.5   | 5.2     | 9.7    | 49    | 102   | 40-150 | 61  | 30  | R1    |
| NMeFOSAA             | ug/kg        | ND          | 10.7  | 9.5   | 5.2     | 10.4   | 49    | 110   | 40-150 | 66  | 30  | R1    |
| NMeFOSE              | ug/kg        | ND          | 107   | 94.7  | 52.9    | 99.0   | 50    | 104   | 40-150 | 61  | 30  | R1    |
| PFBA                 | ug/kg        | ND          | 42.6  | 37.9  | 22.5    | 39.7   | 52    | 104   | 40-150 | 55  | 30  | R1    |
| PFBS                 | ug/kg        | ND          | 9.5   | 8.4   | 4.7     | 9.0    | 50    | 107   | 40-150 | 62  | 30  | R1    |
| PFDA                 | ug/kg        | ND          | 10.7  | 9.5   | 5.5     | 10.0   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| PFDoA                | ug/kg        | ND          | 10.7  | 9.5   | 5.2     | 10.2   | 49    | 107   | 40-150 | 64  | 30  | R1    |
| PFDoS                | ug/kg        | ND          | 10.3  | 9.2   | 2.5     | 3.9    | 24    | 42    | 40-150 | 42  | 30  | M1,R1 |
| PFDS                 | ug/kg        | ND          | 10.3  | 9.1   | 4.7     | 7.2    | 46    | 78    | 40-150 | 42  | 30  | R1    |
| PFEESA               | ug/kg        | ND          | 19    | 16.9  | 9.8     | 17.6   | 52    | 104   | 40-150 | 57  | 30  | R1    |
| PFHpA                | ug/kg        | ND          | 10.7  | 9.5   | 5.4     | 10.3   | 50    | 109   | 40-150 | 63  | 30  | R1    |
| PFHpS                | ug/kg        | ND          | 10.2  | 9     | 5.1     | 9.1    | 51    | 101   | 40-150 | 55  | 30  | R1    |
| PFHxA                | ug/kg        | ND          | 10.7  | 9.5   | 5.4     | 10.0   | 50    | 106   | 40-150 | 61  | 30  | R1    |
| PFHxS                | ug/kg        | ND          | 9.8   | 8.7   | 4.8     | 9.0    | 50    | 104   | 40-150 | 60  | 30  | R1    |
| PFMBA                | ug/kg        | ND          | 21.3  | 18.9  | 10.8    | 19.4   | 51    | 102   | 40-150 | 57  | 30  | R1    |
| PFMPA                | ug/kg        | ND          | 21.3  | 18.9  | 10.7    | 19.1   | 50    | 101   | 40-150 | 56  | 30  | R1    |
| PFNA                 | ug/kg        | ND          | 10.7  | 9.5   | 5.3     | 9.8    | 49    | 103   | 40-150 | 60  | 30  | R1    |
| PFNS                 | ug/kg        | ND          | 10.3  | 9.1   | 5.2     | 8.8    | 50    | 97    | 40-150 | 52  | 30  | R1    |
| PFOA                 | ug/kg        | ND          | 10.7  | 9.5   | 5.5     | 10.0   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| PFOS                 | ug/kg        | ND          | 9.9   | 8.8   | 5.1     | 9.0    | 49    | 100   | 40-150 | 56  | 30  | R1    |
| PFOSA                | ug/kg        | ND          | 10.7  | 9.5   | 5.4     | 10.1   | 51    | 106   | 40-150 | 61  | 30  | R1    |
| PFPeA                | ug/kg        | ND          | 21.3  | 18.9  | 10.7    | 19.8   | 50    | 105   | 40-150 | 60  | 30  | R1    |
| PFPeS                | ug/kg        | ND          | 10    | 8.9   | 4.8     | 8.9    | 48    | 100   | 40-150 | 59  | 30  | R1    |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10703241         |

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 5035           | 085         |              | 5035086      | ;             |             |              |        |     |     |       |
|-----------------------|------------|-----------------------|-------------|--------------|--------------|---------------|-------------|--------------|--------|-----|-----|-------|
| Parameter             | Unite      | 10702794006<br>Result | MS<br>Spike | MSD<br>Spike | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec  | PPD | Max | Qual  |
|                       |            |                       |             |              |              |               |             |              |        |     |     |       |
| PFTeDA                | ug/kg      | ND                    | 10.7        | 9.5          | 5.5          | 9.7           | 51          | 103          | 40-150 | 56  | 30  | R1    |
| PFTrDA                | ug/kg      | ND                    | 10.7        | 9.5          | 3.7          | 7.4           | 34          | 78           | 40-150 | 67  | 30  | M1,R1 |
| PFUnA                 | ug/kg      | ND                    | 10.7        | 9.5          | 5.2          | 9.8           | 49          | 103          | 40-150 | 60  | 30  | R1    |
| 13C2-PFDoA (S)        | %.         |                       |             |              |              |               | 77          | 60           | 40-130 |     |     |       |
| 13C2-PFTA (S)         | %.         |                       |             |              |              |               | 34          | 32           | 20-130 |     |     |       |
| 13C24:2FTS (S)        | %.         |                       |             |              |              |               | 99          | 102          | 40-165 |     |     |       |
| 13C26:2FTS (S)        | %.         |                       |             |              |              |               | 123         | 128          | 40-215 |     |     |       |
| 13C28:2FTS (S)        | %.         |                       |             |              |              |               | 82          | 83           | 40-275 |     |     |       |
| 13C3-PFBS (S)         | %.         |                       |             |              |              |               | 96          | 93           | 40-135 |     |     |       |
| 13C3-PFHxS (S)        | %.         |                       |             |              |              |               | 101         | 100          | 40-130 |     |     |       |
| 13C3HFPO-DA (S)       | %.         |                       |             |              |              |               | 97          | 94           | 40-130 |     |     |       |
| 13C4-PFBA (S)         | %.         |                       |             |              |              |               | 93          | 95           | 8-130  |     |     |       |
| 13C4-PFHpA (S)        | %.         |                       |             |              |              |               | 99          | 93           | 40-130 |     |     |       |
| 13C5-PFHxA (S)        | %.         |                       |             |              |              |               | 96          | 93           | 40-130 |     |     |       |
| 13C5-PFPeA (S)        | %.         |                       |             |              |              |               | 96          | 92           | 35-130 |     |     |       |
| 13C6-PFDA (S)         | %.         |                       |             |              |              |               | 90          | 89           | 40-130 |     |     |       |
| 13C7-PFUdA (S)        | %.         |                       |             |              |              |               | 86          | 76           | 40-130 |     |     |       |
| 13C8-PFOA (S)         | %.         |                       |             |              |              |               | 95          | 87           | 40-130 |     |     |       |
| 13C8-PFOS (S)         | %.         |                       |             |              |              |               | 94          | 94           | 40-130 |     |     |       |
| 13C8-PFOSA (S)        | %.         |                       |             |              |              |               | 93          | 91           | 40-130 |     |     |       |
| 13C9-PFNA (S)         | %.         |                       |             |              |              |               | 89          | 90           | 40-130 |     |     |       |
| d3-MeFOSAA (S)        | %.         |                       |             |              |              |               | 80          | 75           | 40-135 |     |     |       |
| d3-NMeFOSA (S)        | %.         |                       |             |              |              |               | 78          | 70           | 10-130 |     |     |       |
| d5-EtFOSAA (S)        | %.         |                       |             |              |              |               | 84          | 75           | 40-150 |     |     |       |
| d5-NEtFOSA (S)        | %.         |                       |             |              |              |               | 70          | 58           | 10-130 |     |     |       |
| d7-NMeFOSE (S)        | %.         |                       |             |              |              |               | 92          | 88           | 20-130 |     |     |       |
| d9-NEtFOSE (S)        | %.         |                       |             |              |              |               | 93          | 84           | 15-130 |     |     |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: Rye Turf Project Pace Project No.: 10703241

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:<br>Pace Project No.: | Rye Turf Project<br>10703241 |                 |          |                   |                     |
|-------------------------------|------------------------------|-----------------|----------|-------------------|---------------------|
| Lab ID                        | Sample ID                    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
| 10703241001                   | Shock Pad                    | EPA 1633 DRAFT  | 963415   | EPA 1633 DRAFT    | 965545              |



September 5, 2024

Kirsten Hogberg Pace Analytical Laboratory - MN 1700 Elm Street Minneapolis, MN 55414

Project Location: Rye Turf Project Client Job Number: Project Number: 10703241 Laboratory Work Order Number: 24H4312

Enclosed are results of analyses for samples as received by the laboratory on August 30, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

the Hant 

Rebecca Faust Project Manager

## Table of Contents

| Sample Summary                                  | 3  |
|-------------------------------------------------|----|
| Case Narrative                                  | 4  |
| Sample Results                                  | 5  |
| 24H4312-01                                      | 5  |
| Sample Preparation Information                  | 6  |
| QC Data                                         | 7  |
| Fluorine by Combustion Ion Chromatography (CIC) | 7  |
| B384908                                         | 7  |
| Flag/Qualifier Summary                          | 8  |
| Certifications                                  | 9  |
| Chain of Custody/Sample Receipt                 | 10 |



-

| 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------|------------------------|--------------------------------------------------|--------------|-----------------------|--|--|--|--|--|--|--|
| Pace Analytical Laboratory                                                          | MN                         |                        |                                                  |              |                       |  |  |  |  |  |  |  |
| 1700 Elm Street                                                                     |                            |                        |                                                  |              | REPORT DATE: 9/5/2024 |  |  |  |  |  |  |  |
| Minneapolis, MN 55414                                                               |                            | PURCHASE ORDER NUMBER: |                                                  |              |                       |  |  |  |  |  |  |  |
| ATTN: Kirsten Hogberg                                                               |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |
|                                                                                     |                            |                        | PROJECT NUMBER: 107                              | 03241        |                       |  |  |  |  |  |  |  |
| ANALYTICAL SUMMARY                                                                  |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |
|                                                                                     | WORK ORDER NUMBER: 24H4312 |                        |                                                  |              |                       |  |  |  |  |  |  |  |
| The results of analyses perfo                                                       | rmed on the following samp | es submitted to CON-   | TEST, a Pace Analytical Laboratory, are found in | this report. |                       |  |  |  |  |  |  |  |
|                                                                                     |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |
| PROJECT LOCATION:                                                                   | Rye Turf Project           |                        |                                                  |              |                       |  |  |  |  |  |  |  |
|                                                                                     |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |
| FIELD SAMPLE #                                                                      | LAB ID:                    | MATRIX                 | SAMPLE DESCRIPTION                               | TEST         | SUB LAB               |  |  |  |  |  |  |  |
|                                                                                     |                            |                        |                                                  |              |                       |  |  |  |  |  |  |  |



CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist



|                                       | 39 Spruce S | treet * East | Longmeadow, MA 0    | 1028 * FAX 4 | 13/525-6405 * T | EL. 413/525-2332      |           |              |         |
|---------------------------------------|-------------|--------------|---------------------|--------------|-----------------|-----------------------|-----------|--------------|---------|
| Project Location: Rye Turf Project    | Sa          | mple Descrip | tion:               |              |                 |                       | Work Orde | er: 24H4312  |         |
| Date Received: 8/30/2024 Field Sample |             |              |                     |              |                 |                       |           |              |         |
| #: Shock Pad                          | Sa          | mpled: 8/2/2 | 024 09:00           |              |                 |                       |           |              |         |
| Sample ID: 24H4312-01                 |             |              |                     |              |                 |                       |           |              |         |
| Sample Matrix: Product/Solid          |             |              |                     |              |                 |                       |           |              |         |
|                                       |             | Fluor        | ine by Combustion I | on Chromatog | raphy (CIC)     |                       |           |              |         |
|                                       |             |              |                     |              |                 |                       | Date      | Date/Time    |         |
| Analyte                               | Results     | RL           | Units               | Dilution     | Flag/Qual       | Method                | Prepared  | Analyzed     | Analyst |
| Total Fluorine (TF)                   | 38          | 4.2          | mg/Kg               | 1            |                 | Total Fluorine by CIC | 9/4/24    | 9/4/24 13:36 | IS      |



#### Sample Extraction Data

#### Prep Method:EPA 1621 Analytical Method:Total Fluorine by CIC

| Lab Number [Field ID]  | Batch   | Initial [mg] | Final [Boat] | Date     |
|------------------------|---------|--------------|--------------|----------|
| 24H4312-01 [Shock Pad] | B384908 | 47.9         | 1.00         | 09/04/24 |



#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332 QUALITY CONTROL

#### Fluorine by Combustion Ion Chromatography (CIC) - Quality Control

| Analyte                  | Result                        | Reporting<br>Limit | Units | Spike<br>Level                | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------|-------------------------------|--------------------|-------|-------------------------------|------------------|--------|----------------|------|--------------|-------|
| Batch B384908 - EPA 1621 |                               |                    |       |                               |                  |        |                |      |              |       |
| Blank (B384908-BLK1)     | Prepared & Analyzed: 09/04/24 |                    |       |                               |                  |        |                |      |              |       |
| Total Fluorine (TF)      | ND                            | 4.0                | mg/Kg |                               |                  |        |                |      |              |       |
| LCS (B384908-BS1)        |                               |                    |       | Prepared & Analyzed: 09/04/24 |                  |        |                |      |              |       |
| Total Fluorine (TF)      | 18.8                          | 4.1                | mg/Kg | 19.0                          |                  | 99.0   | 0-200          |      |              |       |
| LCS Dup (B384908-BSD1)   |                               |                    |       | Prepared &                    | Analyzed: 09     | /04/24 |                |      |              |       |
| Total Fluorine (TF)      | 19.4                          | 4.1                | mg/Kg | 19.4                          |                  | 100    | 0-200          | 3.08 |              |       |



#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- \* QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit is at the level of quantitation (LOQ)
- DL Detection Limit is the lower limit of detection determined by the MDL study
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.



# CERTIFICATIONS CERTIFICATIONS Analyses included in this Report Analyses included in this Report Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations: Code Description Number Expires



September 09, 2024

Ryan Coyne City of Rye 1051 Boston Post Road Rye, NY 10580



RE: Project: Rye Turf Project Pace Project No.: 10702741

Dear Ryan Coyne:

Enclosed are the analytical results for sample(s) received by the laboratory on August 05, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kugh Hegherf

Kirsten Hogberg kirsten.hogberg@pacelabs.com (612)607-1700 Project Manager

Enclosures




Pace Analytical Services, LLC 1700 Elm Street Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: Rye Turf Project Pace Project No.: 10702741

#### Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 DoD Certification via A2LA #: 2926.01 EPA Region 8 Tribal Water Systems+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 GMP+ Certification #: GMP050884 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 ISO/IEC 17025 Certification via A2LA #: 2926.01 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: AI-03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Minnesota Dept of Ag Approval: via MN 027-053-137 Minnesota Petrofund Registration #: 1240

Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification (A2LA) #: R-036 North Dakota Certification (MN) #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification via A2LA #: 2926.01 USDA Permit #: P330-19-00208



#### SAMPLE SUMMARY

|                   | O                | <b>D</b> -1 |
|-------------------|------------------|-------------|
| Pace Project No.: | 10702741         |             |
| Project:          | Rye Turf Project |             |

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 10702741001 | Turf      | Solid  | 08/02/24 12:41 | 08/05/24 09:45 |



#### SAMPLE ANALYTE COUNT

Project:Rye Turf ProjectPace Project No.:10702741

| Lab ID      | Sample ID | Method         | Analysts | Analytes<br>Reported | Laboratory |  |
|-------------|-----------|----------------|----------|----------------------|------------|--|
| 10702741001 | Turf      | EPA 1633 DRAFT | MJL      | 64                   | PASI-M     |  |

PASI-M = Pace Analytical Services - Minneapolis



#### ANALYTICAL RESULTS

Project: Rye Turf Project

Pace Project No.: 10702741

| Sample: Turf                 | Lab ID:      | 1070274100     | 01 Collected    | : 08/02/24  | 4 12:41  | Received: 08/    | 05/24 09:45 Ma | atrix: Solid |      |
|------------------------------|--------------|----------------|-----------------|-------------|----------|------------------|----------------|--------------|------|
| Results reported on a "wet-w | eight" basis |                |                 |             |          |                  |                |              |      |
|                              |              |                | Report          |             |          |                  |                |              |      |
| Parameters                   | Results      | Units          | Limit           | MDL         | DF       | Prepared         | Analyzed       | CAS No.      | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EP/    | A 1633 DRAFT    | Preparati   | on Met   | hod: EPA 1633 DF | RAFT           |              |      |
|                              | Initial Volu | me/Weight:     | 1.018 g Final \ | /olume/We   | eight: 5 | mL               |                |              |      |
|                              | Pace Anal    | vtical Service | es - Minneapoli | S           |          |                  |                |              |      |
|                              |              |                | 2.0             | 1 1         | 1        | 00/20/24 12:26   | 00/20/24 12:20 | 762051 02 0  |      |
| 3:3 ETCA                     |              | ug/kg          | 3.9<br>4 Q      | 1.1         | 1        | 08/28/24 12:30   | 08/29/24 12:39 | 356-02-5     |      |
| 4:2 FTS                      |              | ug/kg<br>ug/kg | 4.9             | 0.86        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 757124-72-4  |      |
| 5.3 FTCA                     |              | ug/kg<br>ug/kg | 24.6            | 4.6         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 01/637-/0-3  |      |
| 6:2 FTS                      | ND           | ug/kg          | 24.0            | 4.0<br>0.87 | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 27619-97-2   |      |
| 7:3 FTCA                     | ND           | ug/kg          | 24.6            | 43          | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 812-70-4     |      |
| 8:2 FTS                      | ND           | ug/kg          | 3.9             | 1.0         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 39108-34-4   |      |
| 9CI-PE3ONS                   | ND           | ua/ka          | 3.9             | 1.1         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 756426-58-1  |      |
| ADONA                        | ND           | ua/ka          | 3.9             | 0.83        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 919005-14-4  |      |
| HEPO-DA                      | ND           | ua/ka          | 3.9             | 1.1         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 13252-13-6   |      |
| NETEOSAA                     | ND           | ua/ka          | 0.98            | 0.26        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 2991-50-6    |      |
| NEtFOSA                      | ND           | ua/ka          | 0.98            | 0.33        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 4151-50-2    |      |
| NEtFOSE                      | ND           | ug/kg          | 9.8             | 2.9         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 1691-99-2    |      |
| NFDHA                        | ND           | ug/kg          | 2.0             | 0.54        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 151772-58-6  |      |
| NMeFOSAA                     | ND           | ug/kg          | 0.98            | 0.38        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 2355-31-9    |      |
| NMeFOSA                      | ND           | ug/kg          | 0.98            | 0.32        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 31506-32-8   |      |
| NMeFOSE                      | ND           | ug/kg          | 9.8             | 3.6         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 24448-09-7   |      |
| PFBS                         | ND           | ug/kg          | 0.98            | 0.22        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 375-73-5     |      |
| PFDA                         | ND           | ug/kg          | 0.98            | 0.22        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 335-76-2     |      |
| PFHxA                        | ND           | ug/kg          | 0.98            | 0.29        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 307-24-4     |      |
| PFBA                         | ND           | ug/kg          | 3.9             | 1.1         | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 375-22-4     |      |
| PFDS                         | ND           | ug/kg          | 0.98            | 0.29        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 335-77-3     |      |
| PFDoS                        | ND           | ug/kg          | 0.98            | 0.27        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 79780-39-5   |      |
| PFEESA                       | ND           | ug/kg          | 2.0             | 0.40        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 113507-82-7  |      |
| PFHpS                        | ND           | ug/kg          | 0.98            | 0.25        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 375-92-8     |      |
| PFMBA                        | ND           | ug/kg          | 2.0             | 0.53        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 863090-89-5  |      |
| PFMPA                        | ND           | ug/kg          | 2.0             | 0.64        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 377-73-1     |      |
| PFNS                         | ND           | ug/kg          | 0.98            | 0.26        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 68259-12-1   |      |
| PFOSA                        | ND           | ug/kg          | 0.98            | 0.22        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 754-91-6     |      |
| PFPeA                        | ND           | ug/kg          | 2.0             | 0.53        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 2706-90-3    |      |
| PFPeS                        | ND           | ug/kg          | 0.98            | 0.30        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 2706-91-4    |      |
| PFDoA                        | ND           | ug/kg          | 0.98            | 0.24        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 307-55-1     |      |
| PFHpA                        | ND           | ug/kg          | 0.98            | 0.28        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 375-85-9     |      |
| PFHxS                        | ND           | ug/kg          | 0.98            | 0.25        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 355-46-4     |      |
| PFNA                         | ND           | ug/kg          | 0.98            | 0.30        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 375-95-1     |      |
| PFOS                         | ND           | ug/kg          | 0.98            | 0.24        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 1763-23-1    |      |
| PFOA                         | ND           | ug/kg          | 0.98            | 0.35        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 335-67-1     |      |
| PFTeDA                       | ND           | ug/kg          | 0.98            | 0.29        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 376-06-7     |      |
| PFTrDA                       | ND           | ug/kg          | 0.98            | 0.23        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 72629-94-8   |      |
| PFUnA                        | ND           | ug/kg          | 0.98            | 0.26        | 1        | 08/28/24 12:36   | 08/29/24 12:39 | 2058-94-8    |      |
| Surrogates                   | 0.4          | 0/             | 40,400          |             | 4        | 00/00/04 40-00   | 00/00/04 40:00 |              |      |
|                              | 84           | %.<br>0/       | 40-130          |             | ן<br>∡   | 08/28/24 12:36   | 08/29/24 12:39 |              |      |
| 13C3HFPO-DA (S)              | 98           | %.             | 40-130          |             | 1        | 08/28/24 12:36   | 08/29/24 12:39 |              |      |



#### ANALYTICAL RESULTS

Project: Rye Turf Project

Pace Project No.: 10702741

| Sample: Turf                 | Lab ID:      | 10702741001   | Collecte     | d: 08/02/2 | 24 12:41  | Received: 08/    | 05/24 09:45 Ma | trix: Solid |      |
|------------------------------|--------------|---------------|--------------|------------|-----------|------------------|----------------|-------------|------|
| Results reported on a "wet-w | eight" basis |               |              |            |           |                  |                |             |      |
|                              |              |               | Report       |            |           |                  |                |             |      |
| Parameters                   | Results      | Units         | Limit        | MDL        | DF        | Prepared         | Analyzed       | CAS No.     | Qual |
| EPA 1633 DRAFT Soil          | Analytical   | Method: EPA   | 1633 DRAF    | T Prepara  | tion Meth | nod: EPA 1633 DF | RAFT           |             |      |
|                              | Initial Volu | me/Weight: 1  | .018 g Final | Volume/W   | /eight: 5 | mL               |                |             |      |
|                              | Pace Anal    | tical Service | s - Minneapo | olis       |           |                  |                |             |      |
| Surrogates                   |              |               |              |            |           |                  |                |             |      |
| 13C3-PFBS (S)                | 98           | %.            | 40-135       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C3-PFHxS (S)               | 103          | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C4-PFBA (S)                | 103          | %.            | 8-130        |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C4-PFHpA (S)               | 103          | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C5-PFHxA (S)               | 97           | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C5-PFPeA (S)               | 98           | %.            | 35-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C6-PFDA (S)                | 100          | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C8-PFOA (S)                | 101          | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C8-PFOS (S)                | 97           | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C8-PFOSA (S)               | 72           | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C9-PFNA (S)                | 95           | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d3-MeFOSAA (S)               | 71           | %.            | 40-135       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d3-NMeFOSA (S)               | 84           | %.            | 10-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d5-EtFOSAA (S)               | 75           | %.            | 40-150       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d5-NEtFOSA (S)               | 76           | %.            | 10-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d7-NMeFOSE (S)               | 109          | %.            | 20-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| d9-NEtFOSE (S)               | 96           | %.            | 15-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C2-PFTA (S)                | 82           | %.            | 20-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C7-PFUdA (S)               | 90           | %.            | 40-130       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C24:2FTS (S)               | 93           | %.            | 40-165       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C26:2FTS (S)               | 165          | %.            | 40-215       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |
| 13C28:2FTS (S)               | 90           | %.            | 40-275       |            | 1         | 08/28/24 12:36   | 08/29/24 12:39 |             |      |



Rye Turf Project

Project:

#### **QUALITY CONTROL DATA**

| Pace Project No.: 10702741          |       |              |                                          |              |                |            |  |  |  |  |
|-------------------------------------|-------|--------------|------------------------------------------|--------------|----------------|------------|--|--|--|--|
| QC Batch: 963415                    |       | Analysis Met | hod: EP                                  | A 1633 DRAFT | 633 DRAFT      |            |  |  |  |  |
| QC Batch Method: EPA 1633 DRAFT     |       | Analysis Des | cription: 163                            | 33 SL        |                |            |  |  |  |  |
|                                     |       | Laboratory:  | : Pace Analytical Services - Minneapolis |              |                |            |  |  |  |  |
| Associated Lab Samples: 10702741001 |       | ,            |                                          | , ,          |                |            |  |  |  |  |
| METHOD BLANK: 5035079               |       | Matrix:      | Solid                                    |              |                |            |  |  |  |  |
| Associated Lab Samples: 10702741001 |       |              |                                          |              |                |            |  |  |  |  |
|                                     |       | Blank        | Reporting                                |              |                |            |  |  |  |  |
| Parameter                           | Units | Result       | Limit                                    | MDI          | Analyzed       | Qualifiers |  |  |  |  |
| 11CL DE20LIdS                       |       |              |                                          | 0.22         |                |            |  |  |  |  |
| 2:3 ETCA                            | ug/kg |              | 0.60                                     | 0.22         | 08/29/24 00.40 |            |  |  |  |  |
| 4:2 ETS                             | ug/kg |              | 0.80                                     | 0.34         | 08/29/24 00.40 |            |  |  |  |  |
| 4.2 FTG                             | ug/kg |              | 0.60                                     | 0.10         | 08/29/24 00.40 |            |  |  |  |  |
| 5.3 FTCA<br>6:2 ETS                 | ug/kg |              | 0.80                                     | 0.94         | 08/29/24 00.40 |            |  |  |  |  |
| 0.2 FTG                             | ug/kg |              | 0.00                                     | 0.10         | 08/29/24 00.40 |            |  |  |  |  |
|                                     | ug/kg |              | 5.0                                      | 0.87         | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.80                                     | 0.21         | 08/29/24 00:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.80                                     | 0.22         | 08/29/24 00:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.80                                     | 0.17         | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.80                                     | 0.23         | 08/29/24 06:40 |            |  |  |  |  |
| NEIFOSA                             | ug/kg | ND           | 0.20                                     | 0.068        | 08/29/24 06:40 |            |  |  |  |  |
| NEIFOSAA                            | ug/kg | ND           | 0.20                                     | 0.052        | 08/29/24 06:40 |            |  |  |  |  |
| NETFOSE                             | ug/ĸg | ND           | 2.0                                      | 0.58         | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.40                                     | 0.11         | 08/29/24 06:40 |            |  |  |  |  |
| NMEFOSA                             | ug/kg | ND           | 0.20                                     | 0.065        | 08/29/24 06:40 |            |  |  |  |  |
| NMEFOSA                             | ug/kg | ND           | 0.20                                     | 0.077        | 08/29/24 06:40 |            |  |  |  |  |
| NMEFUSE                             | ug/kg | ND           | 2.0                                      | 0.73         | 08/29/24 06:40 |            |  |  |  |  |
| PFBA                                | ug/ĸg | ND           | 0.80                                     | 0.23         | 08/29/24 06:40 |            |  |  |  |  |
| PFBS                                | ug/kg | ND           | 0.20                                     | 0.045        | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.20                                     | 0.045        | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.20                                     | 0.050        | 08/29/24 06:40 |            |  |  |  |  |
| PFDoS                               | ug/kg | ND           | 0.20                                     | 0.054        | 08/29/24 06:40 |            |  |  |  |  |
| PFDS                                | ug/ĸg | ND           | 0.20                                     | 0.059        | 08/29/24 06:40 |            |  |  |  |  |
| PFEESA                              | ug/kg | ND           | 0.40                                     | 0.081        | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.20                                     | 0.057        | 08/29/24 06:40 |            |  |  |  |  |
| PFHpS                               | ug/kg | ND           | 0.20                                     | 0.052        | 08/29/24 06:40 |            |  |  |  |  |
| PFHXA                               | ug/ĸg | ND           | 0.20                                     | 0.058        | 08/29/24 06:40 |            |  |  |  |  |
| PFHXS                               | ug/kg | ND           | 0.20                                     | 0.051        | 08/29/24 06:40 |            |  |  |  |  |
| PFMBA                               | ug/kg | ND           | 0.40                                     | 0.11         | 08/29/24 06:40 |            |  |  |  |  |
| PEMPA                               | ug/kg | ND           | 0.40                                     | 0.13         | 08/29/24 06:40 |            |  |  |  |  |
|                                     | ug/kg | ND           | 0.20                                     | 0.060        | 08/29/24 06:40 |            |  |  |  |  |
| PENS                                | ug/kg | ND           | 0.20                                     | 0.053        | 08/29/24 06:40 |            |  |  |  |  |
| PFUA                                | ug/kg | ND           | 0.20                                     | 0.071        | 08/29/24 06:40 |            |  |  |  |  |
| PFUS                                | ug/kg | ND           | 0.20                                     | 0.050        | 08/29/24 06:40 |            |  |  |  |  |
| PFUSA                               | ug/kg | ND           | 0.20                                     | 0.044        | 08/29/24 06:40 |            |  |  |  |  |
| PFPeA                               | ug/kg | ND           | 0.40                                     | 0.11         | 08/29/24 06:40 |            |  |  |  |  |
| PFPeS                               | ug/kg | ND           | 0.20                                     | 0.060        | 08/29/24 06:40 |            |  |  |  |  |
| PF IEDA                             | ug/kg | ND           | 0.20                                     | 0.060        | 08/29/24 06:40 |            |  |  |  |  |
| PEIRDA                              | ug/kg | ND           | 0.20                                     | 0.048        | 08/29/24 06:40 |            |  |  |  |  |
| PFUNA                               | ug/kg | ND           | 0.20                                     | 0.054        | 08/29/24 06:40 |            |  |  |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Matrix: Solid

| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10702741         |

| METHOD BLANK: 50     | 035079          |
|----------------------|-----------------|
| Associated Lab Sampl | es: 10702741001 |

|                 |       | Blank  | Reporting |     |                |            |
|-----------------|-------|--------|-----------|-----|----------------|------------|
| Parameter       | Units | Result | Limit     | MDL | Analyzed       | Qualifiers |
| 13C2-PFDoA (S)  | %.    | 78     | 40-130    |     | 08/29/24 06:40 |            |
| 13C2-PFTA (S)   | %.    | 72     | 20-130    |     | 08/29/24 06:40 |            |
| 13C24:2FTS (S)  | %.    | 92     | 40-165    |     | 08/29/24 06:40 |            |
| 13C26:2FTS (S)  | %.    | 123    | 40-215    |     | 08/29/24 06:40 |            |
| 13C28:2FTS (S)  | %.    | 71     | 40-275    |     | 08/29/24 06:40 |            |
| 13C3-PFBS (S)   | %.    | 102    | 40-135    |     | 08/29/24 06:40 |            |
| 13C3-PFHxS (S)  | %.    | 103    | 40-130    |     | 08/29/24 06:40 |            |
| 13C3HFPO-DA (S) | %.    | 101    | 40-130    |     | 08/29/24 06:40 |            |
| 13C4-PFBA (S)   | %.    | 105    | 8-130     |     | 08/29/24 06:40 |            |
| 13C4-PFHpA (S)  | %.    | 99     | 40-130    |     | 08/29/24 06:40 |            |
| 13C5-PFHxA (S)  | %.    | 97     | 40-130    |     | 08/29/24 06:40 |            |
| 13C5-PFPeA (S)  | %.    | 98     | 35-130    |     | 08/29/24 06:40 |            |
| 13C6-PFDA (S)   | %.    | 93     | 40-130    |     | 08/29/24 06:40 |            |
| 13C7-PFUdA (S)  | %.    | 89     | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOA (S)   | %.    | 98     | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOS (S)   | %.    | 92     | 40-130    |     | 08/29/24 06:40 |            |
| 13C8-PFOSA (S)  | %.    | 78     | 40-130    |     | 08/29/24 06:40 |            |
| 13C9-PFNA (S)   | %.    | 94     | 40-130    |     | 08/29/24 06:40 |            |
| d3-MeFOSAA (S)  | %.    | 77     | 40-135    |     | 08/29/24 06:40 |            |
| d3-NMeFOSA (S)  | %.    | 55     | 10-130    |     | 08/29/24 06:40 |            |
| d5-EtFOSAA (S)  | %.    | 78     | 40-150    |     | 08/29/24 06:40 |            |
| d5-NEtFOSA (S)  | %.    | 52     | 10-130    |     | 08/29/24 06:40 |            |
| d7-NMeFOSE (S)  | %.    | 58     | 20-130    |     | 08/29/24 06:40 |            |
| d9-NEtFOSE (S)  | %.    | 61     | 15-130    |     | 08/29/24 06:40 |            |

| LABORATORY CONTROL SAMPLE & LC |       | 50    | 35081  |        |       |       |        |     |     |            |
|--------------------------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                |       | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                      | Units | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| 11CI-PF3OUdS                   | ug/kg | 9.1   | 7.6    | 8.9    | 84    | 98    | 45-160 | 15  | 30  |            |
| 3:3 FTCA                       | ug/kg | 12    | 11.8   | 11.5   | 99    | 96    | 45-130 | 3   | 30  |            |
| 4:2 FTS                        | ug/kg | 9     | 9.3    | 9.3    | 104   | 103   | 60-150 | 0   | 30  |            |
| 5:3 FTCA                       | ug/kg | 60    | 63.2   | 60.1   | 105   | 100   | 60-130 | 5   | 30  |            |
| 6:2 FTS                        | ug/kg | 9.1   | 10     | 9.9    | 109   | 108   | 55-200 | 1   | 30  |            |
| 7:3 FTCA                       | ug/kg | 60    | 59.6   | 58.7   | 99    | 98    | 60-150 | 1   | 30  |            |
| 8:2 FTS                        | ug/kg | 9.2   | 10.3   | 9.7    | 111   | 105   | 70-150 | 5   | 30  |            |
| 9CI-PF3ONS                     | ug/kg | 9     | 9.0    | 9.5    | 100   | 106   | 70-150 | 5   | 30  |            |
| ADONA                          | ug/kg | 9.1   | 9.2    | 9.2    | 101   | 101   | 70-160 | 0   | 30  |            |
| HFPO-DA                        | ug/kg | 9.6   | 10.3   | 10.1   | 107   | 106   | 70-145 | 1   | 30  |            |
| NEtFOSA                        | ug/kg | 2.4   | 2.3    | 2.3    | 98    | 96    | 70-140 | 2   | 30  |            |
| NEtFOSAA                       | ug/kg | 2.4   | 2.4    | 2.4    | 100   | 99    | 65-165 | 1   | 30  |            |
| NEtFOSE                        | ug/kg | 24    | 25.0   | 24.3   | 104   | 101   | 70-135 | 3   | 30  |            |
| NFDHA                          | ug/kg | 4.8   | 5.2    | 5.0    | 109   | 104   | 60-155 | 5   | 30  |            |
| NMeFOSA                        | ug/kg | 2.4   | 2.4    | 2.5    | 98    | 102   | 70-155 | 4   | 30  |            |
| NMeFOSAA                       | ug/kg | 2.4   | 2.5    | 2.4    | 106   | 100   | 65-155 | 6   | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ace

| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10702741         |

| LABORATORY CONTROL SAMPLE & LCSD: | 5035080 |       | 50     | 35081  |       |       |        |     |     |            |
|-----------------------------------|---------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                   |         | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                         | Units   | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| NMeFOSE                           | ug/kg   | 24    | 24.7   | 24.4   | 103   | 102   | 70-140 | 1   | 30  |            |
| PFBA u                            | ug/kg   | 9.6   | 9.5    | 10.2   | 99    | 106   | 70-140 | 7   | 30  |            |
| PFBS u                            | ug/kg   | 2.1   | 2.2    | 2.2    | 105   | 104   | 65-145 | 0   | 30  |            |
| PFDA u                            | ug/kg   | 2.4   | 2.6    | 2.5    | 108   | 104   | 70-155 | 3   | 30  |            |
| PFDoA u                           | ug/kg   | 2.4   | 2.5    | 2.5    | 105   | 106   | 70-150 | 1   | 30  |            |
| PFDoS u                           | ug/kg   | 2.3   | 1.7    | 2.0    | 74    | 87    | 25-160 | 16  | 30  |            |
| PFDS u                            | ug/kg   | 2.3   | 1.9    | 2.2    | 84    | 94    | 40-155 | 12  | 30  |            |
| PFEESA                            | ug/kg   | 4.3   | 4.5    | 4.5    | 106   | 105   | 70-140 | 1   | 30  |            |
| PFHpA u                           | ug/kg   | 2.4   | 2.6    | 2.5    | 109   | 106   | 65-145 | 3   | 30  |            |
| PFHpS u                           | ug/kg   | 2.3   | 2.4    | 2.3    | 104   | 102   | 65-155 | 2   | 30  |            |
| PFHxA                             | ug/kg   | 2.4   | 2.5    | 2.5    | 105   | 104   | 65-140 | 1   | 30  |            |
| PFHxS                             | ug/kg   | 2.2   | 2.2    | 2.3    | 101   | 106   | 60-150 | 4   | 30  |            |
| PFMBA u                           | ug/kg   | 4.8   | 5.0    | 4.9    | 103   | 102   | 60-150 | 1   | 30  |            |
| PFMPA u                           | ug/kg   | 4.8   | 4.9    | 4.8    | 103   | 100   | 30-140 | 3   | 30  |            |
| PFNA u                            | ug/kg   | 2.4   | 2.5    | 2.5    | 106   | 104   | 70-155 | 1   | 30  |            |
| PFNS                              | ug/kg   | 2.3   | 2.1    | 2.4    | 93    | 104   | 55-140 | 11  | 30  |            |
| PFOA u                            | ug/kg   | 2.4   | 2.5    | 2.5    | 103   | 106   | 70-150 | 3   | 30  |            |
| PFOS                              | ug/kg   | 2.2   | 2.2    | 2.3    | 100   | 102   | 65-160 | 3   | 30  |            |
| PFOSA                             | ug/kg   | 2.4   | 2.6    | 2.5    | 106   | 105   | 70-140 | 1   | 30  |            |
| PFPeA                             | ug/kg   | 4.8   | 5.0    | 5.0    | 105   | 105   | 60-150 | 0   | 30  |            |
| PFPeS                             | ug/kg   | 2.3   | 2.2    | 2.2    | 100   | 100   | 55-160 | 0   | 30  |            |
| PFTeDA                            | ug/kg   | 2.4   | 2.5    | 2.5    | 104   | 103   | 65-150 | 1   | 30  |            |
| PFTrDA u                          | ug/kg   | 2.4   | 2.4    | 2.3    | 99    | 96    | 65-150 | 2   | 30  |            |
| PFUnA                             | ug/kg   | 2.4   | 2.5    | 2.6    | 104   | 106   | 70-155 | 2   | 30  |            |
| 13C2-PFDoA (S)                    | %.      |       |        |        | 81    | 88    | 40-130 |     |     |            |
| 13C2-PFTA (S)                     | %.      |       |        |        | 77    | 78    | 20-130 |     |     |            |
| 13C24:2FTS (S)                    | %.      |       |        |        | 94    | 86    | 40-165 |     |     |            |
| 13C26:2FTS (S)                    | %.      |       |        |        | 118   | 112   | 40-215 |     |     |            |
| 13C28:2FTS (S)                    | %.      |       |        |        | 73    | 75    | 40-275 |     |     |            |
| 13C3-PFBS (S)                     | %.      |       |        |        | 106   | 99    | 40-135 |     |     |            |
| 13C3-PFHxS (S)                    | %.      |       |        |        | 112   | 102   | 40-130 |     |     |            |
| 13C3HFPO-DA (S)                   | %.      |       |        |        | 109   | 103   | 40-130 |     |     |            |
| 13C4-PFBA (S)                     | %.      |       |        |        | 112   | 102   | 8-130  |     |     |            |
| 13C4-PFHpA (S)                    | %.      |       |        |        | 104   | 102   | 40-130 |     |     |            |
| 13C5-PFHxA (S)                    | %.      |       |        |        | 103   | 99    | 40-130 |     |     |            |
| 13C5-PFPeA (S)                    | %.      |       |        |        | 105   | 100   | 35-130 |     |     |            |
| 13C6-PFDA (S)                     | %.      |       |        |        | 100   | 100   | 40-130 |     |     |            |
| 13C7-PFUdA (S)                    | %.      |       |        |        | 91    | 93    | 40-130 |     |     |            |
| 13C8-PFOA (S)                     | %.      |       |        |        | 102   | 99    | 40-130 |     |     |            |
| 13C8-PFOS (S)                     | %.      |       |        |        | 111   | 102   | 40-130 |     |     |            |
| 13C8-PFOSA (S)                    | %.      |       |        |        | 90    | 91    | 40-130 |     |     |            |
| 13C9-PFNA (S)                     | %.      |       |        |        | 97    | 95    | 40-130 |     |     |            |
| d3-MeFOSAA (S)                    | %.      |       |        |        | 84    | 86    | 40-135 |     |     |            |
| d3-NMeFOSA (S)                    | %.      |       |        |        | 68    | 65    | 10-130 |     |     |            |
| d5-EtFOSAA (S)                    | %.      |       |        |        | 82    | 88    | 40-150 |     |     |            |
| d5-NEtFOSA (S)                    | %.      |       |        |        | 64    | 64    | 10-130 |     |     |            |
| d7-NMeFOSE (S)                    | %.      |       |        |        | 69    | 69    | 20-130 |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10702741         |

| LABORATORY CONTROL SAMPLE & | LCSD: 5035080 |       | 50     | 35081  |         |          |     |        |            |     |            |
|-----------------------------|---------------|-------|--------|--------|---------|----------|-----|--------|------------|-----|------------|
|                             |               | Spike | LCS    | LCSD   | LCS     | LC       | SD  | % Rec  |            | Max |            |
| Parameter                   | Units         | Conc. | Result | Result | % Rec   | % F      | Rec | Limits | RPD        | RPD | Qualifiers |
| d9-NEtFOSE (S)              | %.            |       |        |        | 68      |          | 71  | 15-130 |            |     |            |
| LABORATORY CONTROL SAMPLE:  | 5035082       |       |        |        |         |          |     |        |            |     |            |
|                             |               | Spike | LCS    |        | LCS     |          | %   | Rec    |            |     |            |
| Parameter                   | Units         | Conc. | Result |        | % Rec   |          | Li  | mits   | Qualifiers |     |            |
| 11CI-PF3OUdS                | ug/kg         | 0.76  |        | .65J   | ł       | 86       |     | 45-160 |            |     |            |
| 3:3 FTCA                    | ug/kg         | 1     |        | .85J   | 1       | 85       |     | 45-130 |            |     |            |
| 4:2 FTS                     | ug/kg         | 0.75  |        | .7J    | 9       | 93       |     | 60-150 |            |     |            |
| 5:3 FTCA                    | ug/kg         | 5     |        | 4.5J   | 8       | 89       |     | 60-130 |            |     |            |
| 6:2 FTS                     | ug/kg         | 0.76  |        | .79J   | 1(      | 05       |     | 55-200 |            |     |            |
| 7:3 FTCA                    | ug/kg         | 5     |        | 4.6J   | 9       | 91       |     | 60-150 |            |     |            |
| 8:2 FTS                     | ug/kg         | 0.77  |        | .74J   | 9       | 96       |     | 70-150 |            |     |            |
| 9CI-PF3ONS                  | ug/kg         | 0.75  |        | .69J   | 9       | 92       |     | 70-150 |            |     |            |
| ADONA                       | ug/kg         | 0.76  |        | .74J   | 9       | 99       |     | 70-160 |            |     |            |
| HFPO-DA                     | ug/kg         | 0.8   |        | .76J   | 9       | 95       |     | 70-145 |            |     |            |
| NEtFOSA                     | ug/kg         | 0.2   |        | ND     | 9       | 98       |     | 70-140 |            |     |            |
| NEtFOSAA                    | ug/kg         | 0.2   |        | 0.21   | 1(      | 05       |     | 65-165 |            |     |            |
| NEtFOSE                     | ug/kg         | 2     |        | ND     | 9       | 99       |     | 70-135 |            |     |            |
| NFDHA                       | ua/ka         | 0.4   |        | 0.41   | 1(      | 01       |     | 60-155 |            |     |            |
| NMeFOSA                     | ua/ka         | 0.2   |        | .19J   | 9       | 94       |     | 70-155 |            |     |            |
| NMeFOSAA                    | ug/kg         | 0.2   |        | 0.25   | 12      | 26       |     | 65-155 |            |     |            |
| NMeFOSE                     | ua/ka         | 2     |        | ND     | 9       | 99       |     | 70-140 |            |     |            |
| PFBA                        | ua/ka         | 0.8   |        | 0.82   | 1(      | 02       |     | 70-140 |            |     |            |
| PFBS                        | ua/ka         | 0.18  |        | .19J   | 1(      | 05       |     | 65-145 |            |     |            |
| PFDA                        | ua/ka         | 0.2   |        | 0.20   | 1(      | 02       |     | 70-155 |            |     |            |
| PFDoA                       | ua/ka         | 0.2   |        | .19J   |         | 94       |     | 70-150 |            |     |            |
| PFDoS                       | ua/ka         | 0.19  |        | .18J   | 9       | 93       |     | 25-160 |            |     |            |
| PFDS                        | ua/ka         | 0.19  |        | .19J   | 1(      | 00       |     | 40-155 |            |     |            |
| PEESA                       | ua/ka         | 0.36  |        | .34.J  |         | 97       |     | 70-140 |            |     |            |
| PFHpA                       | ug/kg         | 0.2   |        | ND     | (       | 98       |     | 65-145 |            |     |            |
| PFHpS                       | ug/kg         | 0.19  |        | ND     | 1(      | 04       |     | 65-155 |            |     |            |
| PFHxA                       | ua/ka         | 0.2   |        | ND     |         | 98       |     | 65-140 |            |     |            |
| PFHxS                       | ug/kg         | 0.18  |        | 18.1   | ,       | 96       |     | 60-150 |            |     |            |
| PEMBA                       | ug/kg         | 0.10  |        | 39.1   | ,       | 97       |     | 60-150 |            |     |            |
| PEMPA                       | ug/kg         | 0.1   |        | 39.1   |         | 97       |     | 30-140 |            |     |            |
| PENA                        | ug/kg         | 0.4   |        | 0.20   | 1(      | 01       |     | 70-155 |            |     |            |
| PFNS                        | ug/kg         | 0.19  |        | 18.1   | (       | 95       |     | 55-140 |            |     |            |
| PEOA                        | ug/kg         | 0.10  |        |        | ·<br>·  | aa       |     | 70-150 |            |     |            |
| PEOS                        | ug/kg         | 0.2   |        | 101    | 1(      | 00<br>04 |     | 65-160 |            |     |            |
| PEOSA                       | ug/kg         | 0.13  |        | 0.20   | 10      | 04       |     | 70 140 |            |     |            |
| PFD5A<br>PFD6A              | ug/kg         | 0.2   |        | 301    |         | 02<br>07 |     | 60-150 |            |     |            |
|                             | ug/kg         | 0.4   |        | 101    | 11      | 00       |     | 55-160 |            |     |            |
|                             | ug/kg         | 0.19  |        | 0.21   | 10      | 00       |     | 65-150 |            |     |            |
|                             | ug/kg         | 0.2   |        | 101    |         | 00       |     | 65 150 |            |     |            |
|                             | ug/kg         | 0.2   |        | . 100  | :<br>بە | 92<br>00 |     | 70 455 |            |     |            |
| PFUNA                       | ug/kg         | 0.2   |        | 0.20   | 10      | 00       |     | 10-155 |            |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10702741         |

|                 |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------------|-------|-------|--------|-------|--------|------------|
| Parameter       | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| 13C2-PFDoA (S)  | %.    |       |        | 86    | 40-130 |            |
| 13C2-PFTA (S)   | %.    |       |        | 74    | 20-130 |            |
| 13C24:2FTS (S)  | %.    |       |        | 97    | 40-165 |            |
| 13C26:2FTS (S)  | %.    |       |        | 125   | 40-215 |            |
| 13C28:2FTS (S)  | %.    |       |        | 83    | 40-275 |            |
| 13C3-PFBS (S)   | %.    |       |        | 105   | 40-135 |            |
| 13C3-PFHxS (S)  | %.    |       |        | 111   | 40-130 |            |
| 13C3HFPO-DA (S) | %.    |       |        | 108   | 40-130 |            |
| 13C4-PFBA (S)   | %.    |       |        | 103   | 8-130  |            |
| 13C4-PFHpA (S)  | %.    |       |        | 104   | 40-130 |            |
| 13C5-PFHxA (S)  | %.    |       |        | 104   | 40-130 |            |
| 13C5-PFPeA (S)  | %.    |       |        | 103   | 35-130 |            |
| 13C6-PFDA (S)   | %.    |       |        | 99    | 40-130 |            |
| 13C7-PFUdA (S)  | %.    |       |        | 96    | 40-130 |            |
| 13C8-PFOA (S)   | %.    |       |        | 105   | 40-130 |            |
| 13C8-PFOS (S)   | %.    |       |        | 109   | 40-130 |            |
| 13C8-PFOSA (S)  | %.    |       |        | 92    | 40-130 |            |
| 13C9-PFNA (S)   | %.    |       |        | 102   | 40-130 |            |
| d3-MeFOSAA (S)  | %.    |       |        | 89    | 40-135 |            |
| d3-NMeFOSA (S)  | %.    |       |        | 65    | 10-130 |            |
| d5-EtFOSAA (S)  | %.    |       |        | 91    | 40-150 |            |
| d5-NEtFOSA (S)  | %.    |       |        | 61    | 10-130 |            |
| d7-NMeFOSE (S)  | %.    |       |        | 70    | 20-130 |            |
| d9-NEtFOSE (S)  | %.    |       |        | 71    | 15-130 |            |

| MATRIX SPIKE & MATRIX SPI | KE DUPL | ICATE: 5035 | 5083  |       | 5035084 | Ļ      |       |       |        |     |     |      |
|---------------------------|---------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |         |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           |         | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units   | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 11CI-PF3OUdS              | ug/kg   | ND          | 21.9  | 22.7  | 22.4    | 21.8   | 102   | 96    | 40-150 | 3   | 30  |      |
| 3:3 FTCA                  | ug/kg   | ND          | 29    | 30.1  | 26.9    | 26.5   | 93    | 88    | 40-150 | 1   | 30  |      |
| 4:2 FTS                   | ug/kg   | ND          | 21.8  | 22.6  | 22.7    | 22.4   | 104   | 99    | 40-150 | 1   | 30  |      |
| 5:3 FTCA                  | ug/kg   | ND          | 145   | 151   | 140     | 149    | 96    | 99    | 40-150 | 6   | 30  |      |
| 6:2 FTS                   | ug/kg   | ND          | 22.1  | 22.9  | 23.7    | 24.2   | 108   | 106   | 40-150 | 2   | 30  |      |
| 7:3 FTCA                  | ug/kg   | ND          | 145   | 151   | 140     | 145    | 97    | 97    | 40-150 | 4   | 30  |      |
| 8:2 FTS                   | ug/kg   | ND          | 22.4  | 23.2  | 22.1    | 22.6   | 99    | 97    | 40-150 | 2   | 30  |      |
| 9CI-PF3ONS                | ug/kg   | ND          | 21.8  | 22.6  | 22.6    | 22.8   | 104   | 101   | 40-150 | 1   | 30  |      |
| ADONA                     | ug/kg   | ND          | 21.9  | 22.7  | 21.2    | 21.8   | 97    | 96    | 40-150 | 3   | 30  |      |
| HFPO-DA                   | ug/kg   | ND          | 23.2  | 24.1  | 22.7    | 24.3   | 98    | 101   | 40-150 | 7   | 30  |      |
| NEtFOSA                   | ug/kg   | ND          | 5.8   | 6     | 5.8     | 5.7    | 99    | 95    | 40-150 | 0   | 30  |      |
| NEtFOSAA                  | ug/kg   | ND          | 5.8   | 6     | 5.5     | 5.8    | 94    | 96    | 40-150 | 6   | 30  |      |
| NEtFOSE                   | ug/kg   | ND          | 58.1  | 60.2  | 58.5    | 60.2   | 101   | 100   | 40-150 | 3   | 30  |      |
| NFDHA                     | ug/kg   | ND          | 11.6  | 12    | 12.5    | 12.7   | 108   | 105   | 40-150 | 1   | 30  |      |
| NMeFOSA                   | ug/kg   | ND          | 5.8   | 6     | 5.8     | 5.7    | 100   | 94    | 40-150 | 2   | 30  |      |
| NMeFOSAA                  | ug/kg   | ND          | 5.8   | 6     | 5.7     | 6.0    | 98    | 99    | 40-150 | 5   | 30  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:           | Rye Turf Project |
|--------------------|------------------|
| Pace Project No .: | 10702741         |

| MATRIX SPIKE & MATR | IX SPIKE DUPL | ICATE: 5035 | 083   |       | 5035084 | ŀ      |       |       |        |     |     |      |
|---------------------|---------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                     |               |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                     |               | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter           | Units         | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| NMeFOSE             | ug/kg         | ND          | 58.1  | 60.2  | 61.0    | 59.5   | 105   | 99    | 40-150 | 2   | 30  |      |
| PFBA                | ug/kg         | ND          | 23.2  | 24.1  | 24.9    | 24.0   | 106   | 99    | 40-150 | 4   | 30  |      |
| PFBS                | ug/kg         | ND          | 5.2   | 5.3   | 5.6     | 5.3    | 108   | 100   | 40-150 | 4   | 30  |      |
| PFDA                | ug/kg         | ND          | 5.8   | 6     | 6.1     | 6.3    | 104   | 103   | 40-150 | 3   | 30  |      |
| PFDoA               | ug/kg         | ND          | 5.8   | 6     | 6.3     | 6.2    | 109   | 103   | 40-150 | 2   | 30  |      |
| PFDoS               | ug/kg         | ND          | 5.6   | 5.8   | 5.3     | 5.4    | 94    | 92    | 40-150 | 1   | 30  |      |
| PFDS                | ug/kg         | ND          | 5.6   | 5.8   | 5.6     | 5.3    | 100   | 91    | 40-150 | 6   | 30  |      |
| PFEESA              | ug/kg         | ND          | 10.3  | 10.7  | 11.0    | 11.7   | 107   | 109   | 40-150 | 6   | 30  |      |
| PFHpA               | ug/kg         | ND          | 5.8   | 6     | 6.1     | 6.4    | 104   | 106   | 40-150 | 6   | 30  |      |
| PFHpS               | ug/kg         | ND          | 5.5   | 5.7   | 5.4     | 5.6    | 98    | 98    | 40-150 | 4   | 30  |      |
| PFHxA               | ug/kg         | ND          | 5.8   | 6     | 6.0     | 6.1    | 101   | 100   | 40-150 | 2   | 30  |      |
| PFHxS               | ug/kg         | ND          | 5.3   | 5.5   | 5.5     | 5.3    | 103   | 97    | 40-150 | 2   | 30  |      |
| PFMBA               | ug/kg         | ND          | 11.6  | 12    | 11.9    | 12.7   | 103   | 105   | 40-150 | 6   | 30  |      |
| PFMPA               | ug/kg         | ND          | 11.6  | 12    | 11.9    | 12.4   | 102   | 103   | 40-150 | 5   | 30  |      |
| PFNA                | ug/kg         | ND          | 5.8   | 6     | 5.9     | 6.1    | 99    | 99    | 40-150 | 3   | 30  |      |
| PFNS                | ug/kg         | ND          | 5.6   | 5.8   | 5.4     | 5.6    | 97    | 97    | 40-150 | 4   | 30  |      |
| PFOA                | ug/kg         | ND          | 5.8   | 6     | 6.4     | 6.5    | 107   | 104   | 40-150 | 0   | 30  |      |
| PFOS                | ug/kg         | ND          | 5.4   | 5.6   | 5.5     | 5.8    | 98    | 99    | 40-150 | 5   | 30  |      |
| PFOSA               | ug/kg         | ND          | 5.8   | 6     | 6.1     | 6.1    | 104   | 102   | 40-150 | 1   | 30  |      |
| PFPeA               | ug/kg         | ND          | 11.6  | 12    | 11.9    | 12.1   | 102   | 100   | 40-150 | 2   | 30  |      |
| PFPeS               | ug/kg         | ND          | 5.5   | 5.7   | 5.6     | 5.5    | 102   | 98    | 40-150 | 1   | 30  |      |
| PFTeDA              | ug/kg         | ND          | 5.8   | 6     | 5.8     | 6.1    | 99    | 101   | 40-150 | 6   | 30  |      |
| PFTrDA              | ug/kg         | ND          | 5.8   | 6     | 5.7     | 6.0    | 97    | 99    | 40-150 | 5   | 30  |      |
| PFUnA               | ug/kg         | ND          | 5.8   | 6     | 6.0     | 6.4    | 104   | 106   | 40-150 | 6   | 30  |      |
| 13C2-PFDoA (S)      | %.            |             |       |       |         |        | 52    | 87    | 40-130 |     |     |      |
| 13C2-PFTA (S)       | %.            |             |       |       |         |        | 48    | 83    | 20-130 |     |     |      |
| 13C24:2FTS (S)      | %.            |             |       |       |         |        | 46    | 79    | 40-165 |     |     |      |
| 13C26:2FTS (S)      | %.            |             |       |       |         |        | 58    | 98    | 40-215 |     |     |      |
| 13C28:2FTS (S)      | %.            |             |       |       |         |        | 41    | 78    | 40-275 |     |     |      |
| 13C3-PFBS (S)       | %.            |             |       |       |         |        | 52    | 98    | 40-135 |     |     |      |
| 13C3-PFHxS (S)      | %.            |             |       |       |         |        | 55    | 105   | 40-130 |     |     |      |
| 13C3HFPO-DA (S)     | %.            |             |       |       |         |        | 55    | 100   | 40-130 |     |     |      |
| 13C4-PFBA (S)       | %.            |             |       |       |         |        | 53    | 97    | 8-130  |     |     |      |
| 13C4-PFHpA (S)      | %.            |             |       |       |         |        | 53    | 96    | 40-130 |     |     |      |
| 13C5-PFHxA (S)      | %.            |             |       |       |         |        | 52    | 94    | 40-130 |     |     |      |
| 13C5-PFPeA (S)      | %.            |             |       |       |         |        | 53    | 96    | 35-130 |     |     |      |
| 13C6-PFDA (S)       | %.            |             |       |       |         |        | 55    | 95    | 40-130 |     |     |      |
| 13C7-PFUdA (S)      | %.            |             |       |       |         |        | 54    | 90    | 40-130 |     |     |      |
| 13C8-PFOA (S)       | %.            |             |       |       |         |        | 51    | 95    | 40-130 |     |     |      |
| 13C8-PFOS (S)       | %.            |             |       |       |         |        | 61    | 95    | 40-130 |     |     |      |
| 13C8-PFOSA (S)      | %.            |             |       |       |         |        | 55    | 86    | 40-130 |     |     |      |
| 13C9-PFNA (S)       | %.            |             |       |       |         |        | 53    | 96    | 40-130 |     |     |      |
| d3-MeFOSAA (S)      | %.            |             |       |       |         |        | 48    | 72    | 40-135 |     |     |      |
| d3-NMeFOSA (S)      | %.            |             |       |       |         |        | 45    | 74    | 10-130 |     |     |      |
| d5-EtFOSAA (S)      | %.            |             |       |       |         |        | 50    | 73    | 40-150 |     |     |      |
| d5-NEtFOSA (S)      | %.            |             |       |       |         |        | 42    | 68    | 10-130 |     |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:Rye Turf ProjectPace Project No.:10702741

| MATRIX SPIKE & MATRIX SP | PIKE DUPL | ICATE: 5035 | 083   |       | 5035084 | 1      |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |           | 10702794001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| d7-NMeFOSE (S)           | %.        |             |       |       |         |        | 48    | 78    | 20-130 |     |     |      |
| d9-NEtFOSE (S)           | %.        |             |       |       |         |        | 50    | 77    | 15-130 |     |     |      |

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 5035 | 085   |       | 5035086 | i      |       |       |        |     |     |       |
|-----------------------|------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-------|
|                       |            |             | MS    | MSD   |         |        |       |       |        |     |     |       |
|                       |            | 10702794006 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |       |
| Parameter             | Units      | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual  |
| 11CI-PF3OUdS          | ug/kg      | ND          | 40.2  | 35.8  | 16.9    | 24.2   | 42    | 68    | 40-150 | 36  | 30  | R1    |
| 3:3 FTCA              | ug/kg      | ND          | 53.3  | 47.4  | 24.6    | 45.3   | 46    | 96    | 40-150 | 59  | 30  | R1    |
| 4:2 FTS               | ug/kg      | ND          | 40    | 35.5  | 20.4    | 37.5   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| 5:3 FTCA              | ug/kg      | ND          | 266   | 237   | 139     | 249    | 52    | 105   | 40-150 | 57  | 30  | R1    |
| 6:2 FTS               | ug/kg      | ND          | 40.5  | 36    | 21.3    | 39.6   | 53    | 110   | 40-150 | 60  | 30  | R1    |
| 7:3 FTCA              | ug/kg      | ND          | 266   | 237   | 140     | 262    | 53    | 111   | 40-150 | 61  | 30  | R1    |
| 8:2 FTS               | ug/kg      | ND          | 41    | 36.5  | 20.7    | 40.7   | 50    | 112   | 40-150 | 65  | 30  | R1    |
| 9CI-PF3ONS            | ug/kg      | ND          | 40    | 35.5  | 20.8    | 34.9   | 52    | 98    | 40-150 | 51  | 30  | R1    |
| ADONA                 | ug/kg      | ND          | 40.2  | 35.8  | 20.2    | 35.9   | 50    | 100   | 40-150 | 56  | 30  | R1    |
| HFPO-DA               | ug/kg      | ND          | 42.6  | 37.9  | 21.2    | 38.5   | 50    | 102   | 40-150 | 58  | 30  | R1    |
| NEtFOSA               | ug/kg      | ND          | 10.7  | 9.5   | 5.0     | 9.5    | 47    | 100   | 40-150 | 62  | 30  | R1    |
| NEtFOSAA              | ug/kg      | ND          | 10.7  | 9.5   | 5.0     | 9.6    | 47    | 101   | 40-150 | 63  | 30  | R1    |
| NEtFOSE               | ug/kg      | ND          | 107   | 94.7  | 53.6    | 96.8   | 50    | 102   | 40-150 | 58  | 30  | R1    |
| NFDHA                 | ug/kg      | ND          | 21.3  | 18.9  | 10.7    | 19.5   | 50    | 103   | 40-150 | 59  | 30  | R1    |
| NMeFOSA               | ug/kg      | ND          | 10.7  | 9.5   | 5.2     | 9.7    | 49    | 102   | 40-150 | 61  | 30  | R1    |
| NMeFOSAA              | ug/kg      | ND          | 10.7  | 9.5   | 5.2     | 10.4   | 49    | 110   | 40-150 | 66  | 30  | R1    |
| NMeFOSE               | ug/kg      | ND          | 107   | 94.7  | 52.9    | 99.0   | 50    | 104   | 40-150 | 61  | 30  | R1    |
| PFBA                  | ug/kg      | ND          | 42.6  | 37.9  | 22.5    | 39.7   | 52    | 104   | 40-150 | 55  | 30  | R1    |
| PFBS                  | ug/kg      | ND          | 9.5   | 8.4   | 4.7     | 9.0    | 50    | 107   | 40-150 | 62  | 30  | R1    |
| PFDA                  | ug/kg      | ND          | 10.7  | 9.5   | 5.5     | 10.0   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| PFDoA                 | ug/kg      | ND          | 10.7  | 9.5   | 5.2     | 10.2   | 49    | 107   | 40-150 | 64  | 30  | R1    |
| PFDoS                 | ug/kg      | ND          | 10.3  | 9.2   | 2.5     | 3.9    | 24    | 42    | 40-150 | 42  | 30  | M1,R1 |
| PFDS                  | ug/kg      | ND          | 10.3  | 9.1   | 4.7     | 7.2    | 46    | 78    | 40-150 | 42  | 30  | R1    |
| PFEESA                | ug/kg      | ND          | 19    | 16.9  | 9.8     | 17.6   | 52    | 104   | 40-150 | 57  | 30  | R1    |
| PFHpA                 | ug/kg      | ND          | 10.7  | 9.5   | 5.4     | 10.3   | 50    | 109   | 40-150 | 63  | 30  | R1    |
| PFHpS                 | ug/kg      | ND          | 10.2  | 9     | 5.1     | 9.1    | 51    | 101   | 40-150 | 55  | 30  | R1    |
| PFHxA                 | ug/kg      | ND          | 10.7  | 9.5   | 5.4     | 10.0   | 50    | 106   | 40-150 | 61  | 30  | R1    |
| PFHxS                 | ug/kg      | ND          | 9.8   | 8.7   | 4.8     | 9.0    | 50    | 104   | 40-150 | 60  | 30  | R1    |
| PFMBA                 | ug/kg      | ND          | 21.3  | 18.9  | 10.8    | 19.4   | 51    | 102   | 40-150 | 57  | 30  | R1    |
| PFMPA                 | ug/kg      | ND          | 21.3  | 18.9  | 10.7    | 19.1   | 50    | 101   | 40-150 | 56  | 30  | R1    |
| PFNA                  | ug/kg      | ND          | 10.7  | 9.5   | 5.3     | 9.8    | 49    | 103   | 40-150 | 60  | 30  | R1    |
| PFNS                  | ug/kg      | ND          | 10.3  | 9.1   | 5.2     | 8.8    | 50    | 97    | 40-150 | 52  | 30  | R1    |
| PFOA                  | ug/kg      | ND          | 10.7  | 9.5   | 5.5     | 10.0   | 51    | 106   | 40-150 | 59  | 30  | R1    |
| PFOS                  | ug/kg      | ND          | 9.9   | 8.8   | 5.1     | 9.0    | 49    | 100   | 40-150 | 56  | 30  | R1    |
| PFOSA                 | ug/kg      | ND          | 10.7  | 9.5   | 5.4     | 10.1   | 51    | 106   | 40-150 | 61  | 30  | R1    |
| PFPeA                 | ug/kg      | ND          | 21.3  | 18.9  | 10.7    | 19.8   | 50    | 105   | 40-150 | 60  | 30  | R1    |
| PFPeS                 | ug/kg      | ND          | 10    | 8.9   | 4.8     | 8.9    | 48    | 100   | 40-150 | 59  | 30  | R1    |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | Rye Turf Project |
|-------------------|------------------|
| Pace Project No.: | 10702741         |

| MATRIX SPIKE & MATRIX | SPIKE DUPL | ICATE: 5035           | 085                  |                       | 5035086      | ;             |             |              |                 |     |            |       |
|-----------------------|------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|-------|
| Parameter             | Units      | 10702794006<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual  |
| PFTeDA                | ug/kg      | ND                    | 10.7                 | 9.5                   | 5.5          | 9.7           | 51          | 103          | 40-150          | 56  | 30         | R1    |
| PFTrDA                | ug/kg      | ND                    | 10.7                 | 9.5                   | 3.7          | 7.4           | 34          | 78           | 40-150          | 67  | 30         | M1,R1 |
| PFUnA                 | ug/kg      | ND                    | 10.7                 | 9.5                   | 5.2          | 9.8           | 49          | 103          | 40-150          | 60  | 30         | R1    |
| 13C2-PFDoA (S)        | %.         |                       |                      |                       |              |               | 77          | 60           | 40-130          |     |            |       |
| 13C2-PFTA (S)         | %.         |                       |                      |                       |              |               | 34          | 32           | 20-130          |     |            |       |
| 13C24:2FTS (S)        | %.         |                       |                      |                       |              |               | 99          | 102          | 40-165          |     |            |       |
| 13C26:2FTS (S)        | %.         |                       |                      |                       |              |               | 123         | 128          | 40-215          |     |            |       |
| 13C28:2FTS (S)        | %.         |                       |                      |                       |              |               | 82          | 83           | 40-275          |     |            |       |
| 13C3-PFBS (S)         | %.         |                       |                      |                       |              |               | 96          | 93           | 40-135          |     |            |       |
| 13C3-PFHxS (S)        | %.         |                       |                      |                       |              |               | 101         | 100          | 40-130          |     |            |       |
| 13C3HFPO-DA (S)       | %.         |                       |                      |                       |              |               | 97          | 94           | 40-130          |     |            |       |
| 13C4-PFBA (S)         | %.         |                       |                      |                       |              |               | 93          | 95           | 8-130           |     |            |       |
| 13C4-PFHpA (S)        | %.         |                       |                      |                       |              |               | 99          | 93           | 40-130          |     |            |       |
| 13C5-PFHxA (S)        | %.         |                       |                      |                       |              |               | 96          | 93           | 40-130          |     |            |       |
| 13C5-PFPeA (S)        | %.         |                       |                      |                       |              |               | 96          | 92           | 35-130          |     |            |       |
| 13C6-PFDA (S)         | %.         |                       |                      |                       |              |               | 90          | 89           | 40-130          |     |            |       |
| 13C7-PFUdA (S)        | %.         |                       |                      |                       |              |               | 86          | 76           | 40-130          |     |            |       |
| 13C8-PFOA (S)         | %.         |                       |                      |                       |              |               | 95          | 87           | 40-130          |     |            |       |
| 13C8-PFOS (S)         | %.         |                       |                      |                       |              |               | 94          | 94           | 40-130          |     |            |       |
| 13C8-PFOSA (S)        | %.         |                       |                      |                       |              |               | 93          | 91           | 40-130          |     |            |       |
| 13C9-PFNA (S)         | %.         |                       |                      |                       |              |               | 89          | 90           | 40-130          |     |            |       |
| d3-MeFOSAA (S)        | %.         |                       |                      |                       |              |               | 80          | 75           | 40-135          |     |            |       |
| d3-NMeFOSA (S)        | %.         |                       |                      |                       |              |               | 78          | 70           | 10-130          |     |            |       |
| d5-EtFOSAA (S)        | %.         |                       |                      |                       |              |               | 84          | 75           | 40-150          |     |            |       |
| d5-NEtFOSA (S)        | %.         |                       |                      |                       |              |               | 70          | 58           | 10-130          |     |            |       |
| d7-NMeFOSE (S)        | %.         |                       |                      |                       |              |               | 92          | 88           | 20-130          |     |            |       |
| d9-NEtFOSE (S)        | %.         |                       |                      |                       |              |               | 93          | 84           | 15-130          |     |            |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: Rye Turf Project Pace Project No.: 10702741

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:<br>Pace Project No.: | Rye Turf Project<br>10702741 |                 |          |                   |                     |
|-------------------------------|------------------------------|-----------------|----------|-------------------|---------------------|
| Lab ID                        | Sample ID                    | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
| 10702741001                   | Turf                         | EPA 1633 DRAFT  | 963415   | EPA 1633 DRAFT    | 965545              |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

September 9, 2024

Kirsten Hogberg Pace Analytical Laboratory - MN 1700 Elm Street Minneapolis, MN 55414

Project Location: Rye Turf Project Client Job Number: Project Number: 10702741 Laboratory Work Order Number: 24H4314

Enclosed are results of analyses for samples as received by the laboratory on August 29, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

the Hant 

Rebecca Faust Project Manager

### Table of Contents

| Sample Summary                                  | 3  |
|-------------------------------------------------|----|
| Case Narrative                                  | 4  |
| Sample Results                                  | 5  |
| 24H4314-01                                      | 5  |
| Sample Preparation Information                  | 6  |
| QC Data                                         | 7  |
| Fluorine by Combustion Ion Chromatography (CIC) | 7  |
| B384914                                         | 7  |
| Flag/Qualifier Summary                          | 8  |
| Certifications                                  | 9  |
| Chain of Custody/Sample Receipt                 | 10 |



| 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 |                                    |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------|------------------------|--------------------------------------------------|--------------|-----------|--|--|--|--|--|--|--|--|
| Pace Analytical Laboratory -                                                        | MN                                 |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
| 1700 Elm Street                                                                     |                                    | REPORT DATI            |                                                  |              |           |  |  |  |  |  |  |  |  |
| Minneapolis, MN 55414                                                               |                                    | PURCHASE ORDER NUMBER: |                                                  |              |           |  |  |  |  |  |  |  |  |
| ATTN: Kirsten Hogberg                                                               |                                    |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
| PROJECT NUMBER: 10702741                                                            |                                    |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
| ANALYTICAL SUMMARY                                                                  |                                    |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
|                                                                                     | WORK ORDER NUMBER: 24H4314         |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
| The results of analyses perfo                                                       | rmed on the following sampl        | es submitted to CON-   | TEST, a Pace Analytical Laboratory, are found in | this report. |           |  |  |  |  |  |  |  |  |
| PROJECT LOCATION:                                                                   | PROJECT LOCATION: Rye Turf Project |                        |                                                  |              |           |  |  |  |  |  |  |  |  |
| FIELD SAMPLE #                                                                      | LAB ID:                            | MATRIX                 | SAMPLE DESCRIPTION                               | TEST         | SUB LAB   |  |  |  |  |  |  |  |  |
| Turf                                                                                | 24H4314-01                         | Product/Solid          |                                                  | Total Fluori | ne by CIC |  |  |  |  |  |  |  |  |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Page 22 of 31 Page 4 of 13



|                                    | 39 Spruce S | street * East | Longmeadow, MA 0     | 1028 * FAX 4 | 13/525-6405 * TI | EL. 413/525-2332      |           |              |         |
|------------------------------------|-------------|---------------|----------------------|--------------|------------------|-----------------------|-----------|--------------|---------|
| Project Location: Rye Turf Project | Sa          | mple Descrip  | tion:                |              |                  |                       | Work Orde | er: 24H4314  |         |
| Date Received: 8/29/2024 Field     |             |               |                      |              |                  |                       |           |              |         |
| Sample #: Turf                     | Sa          | mpled: 8/2/2  | 024 12:41            |              |                  |                       |           |              |         |
| Sample ID: 24H4314-01 Sample       |             |               |                      |              |                  |                       |           |              |         |
| Matrix: Product/Solid              |             |               |                      |              |                  |                       |           |              |         |
|                                    |             | Fluor         | ine by Combustion Io | n Chromatog  | raphy (CIC)      |                       |           |              |         |
|                                    |             |               |                      |              |                  |                       | Date      | Date/Time    |         |
| Analyte                            | Results     | RL            | Units                | Dilution     | Flag/Qual        | Method                | Prepared  | Analyzed     | Analyst |
| Total Fluorine (TF)                | 230         | 26            | mg/Kg                | 1            |                  | Total Fluorine by CIC | 9/9/24    | 9/9/24 10:36 | IS      |



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### Sample Extraction Data

#### Prep Method:EPA 1621 Analytical Method:Total Fluorine by CIC

| Lab Number [Field ID] | Batch   | Initial [mg] | Final [Boat] | Date     |  |  |
|-----------------------|---------|--------------|--------------|----------|--|--|
| 24H4314-01 [Turf]     | B384914 | 7.80         | 1.00         | 09/09/24 |  |  |

#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332 QUALITY CONTROL

#### Fluorine by Combustion Ion Chromatography (CIC) - Quality Control

| Analyte                  | Result | Reporting<br>Limit            | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |  |  |
|--------------------------|--------|-------------------------------|-------|----------------|------------------|--------|----------------|------|--------------|-------|--|--|
| Batch B384914 - EPA 1621 |        |                               |       |                |                  |        |                |      |              |       |  |  |
| Blank (B384914-BLK1)     |        | Prepared & Analyzed: 09/09/24 |       |                |                  |        |                |      |              |       |  |  |
| Total Fluorine (TF)      | ND     | 4.0                           | mg/Kg |                |                  |        |                |      |              |       |  |  |
| LCS (B384914-BS1)        |        |                               |       | Prepared &     | Analyzed: 09     | /09/24 |                |      |              |       |  |  |
| Total Fluorine (TF)      | 13.5   | 4.0                           | mg/Kg | 18.9           |                  | 71.3   | 0-200          |      |              |       |  |  |
| LCS Dup (B384914-BSD1)   |        |                               |       | Prepared & A   | Analyzed: 09     | /09/24 |                |      |              |       |  |  |
| Total Fluorine (TF)      | 18.8   | 4.0                           | mg/Kg | 18.8           |                  | 99.7   | 0-200          | 33.0 |              |       |  |  |



### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### FLAG/QUALIFIER SUMMARY

- \* QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
- ND Not Detected
- RL Reporting Limit is at the level of quantitation (LOQ)
- DL Detection Limit is the lower limit of detection determined by the MDL study
- MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.



#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

|                                                                                                            | CERTIFICATIONS               |                |        |         |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------|----------------|--------|---------|--|--|--|--|--|--|--|
| Certified Analyses included in this Report                                                                 |                              |                |        |         |  |  |  |  |  |  |  |
| Analyte                                                                                                    |                              | Certifications |        |         |  |  |  |  |  |  |  |
| No certified Anal                                                                                          | yses included in this Report |                |        |         |  |  |  |  |  |  |  |
|                                                                                                            |                              |                |        |         |  |  |  |  |  |  |  |
| Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations: |                              |                |        |         |  |  |  |  |  |  |  |
| Code                                                                                                       | Description                  |                | Number | Expires |  |  |  |  |  |  |  |



# NURSERY FIELD - SYNTHETIC TURF CONSTRUCTION BUDGET

## SOFT COSTS

Total spent prior to 2024

2024 Design

Lab Costs (\$1,012X6)

GZA Soil (Estimated)

Tenen

# CONSTRUCTION

Derosa

Wetland Buffer Enhancements

# **CONSTRUCTION ADMINISTRATION**

Vision CA

Ramboll CA

CONTINGENCY

Contingency (15% of Construction and

### EQUIPMENT

Maintenance

TOTAL

| \$           | 2,900,000 |
|--------------|-----------|
|              |           |
| \$           | 50,000    |
|              |           |
| Ψ            | 525,205   |
| ¢            | 303 063   |
|              |           |
| \$           | 45,100    |
| \$           | 41,000    |
|              |           |
| T            | ,         |
| \$           | 30,000    |
| \$           | 2.039.835 |
|              |           |
| φ            | 2,300     |
| <br>ወ        | 10,000    |
| <br><u>م</u> | 0,072     |
| \$           | 88,200    |
| \$           | 259,030   |
|              |           |
|              |           |
|              |           |

#### GRANT AGREEMENT

| GRANTEE:         | City of Rye, New York                 |
|------------------|---------------------------------------|
| AMOUNT OF GRANT: | \$2,900,000.00                        |
| GRANT TERM:      | 12 months, beginning October 23, 2024 |

The Rye Youth Athletic Foundation d/b/a Let the Kids Play (the "Foundation") has awarded a grant to the City of Rye ("Grantee") to fund the bidding process, design and construction of a synthetic turf field at Rye Nursery located at 421 Milton Avenue (the "Nursery Field Project"), consistent with the Resolution of the Rye City Council Accepting Grant from the Rye Youth Athletic Foundation, duly passed on October 23, 2024 (the "Resolution").

By signing this Agreement, the Grantee agrees to the following:

- 1. The Foundation shall transfer Two Million Eight Hundred Thousand (\$2,800,000.00) (the "Grant Funds") within five (5) business days of the City Council's adoption of the Resolution. The Foundation previously transferred \$100,000 to the City of Rye.
- 2. Report Schedule: The Grantee agrees to submit reports on the following dates:

| Report Name      | Report Due Date(s):                 |  |  |  |  |  |  |  |  |
|------------------|-------------------------------------|--|--|--|--|--|--|--|--|
| Interim Report 1 | 60 days after the City Manager is   |  |  |  |  |  |  |  |  |
|                  | authorized to sign the bid document |  |  |  |  |  |  |  |  |
|                  | (the "First Benchmark Event")       |  |  |  |  |  |  |  |  |
| Interim Report 2 | 30 days after installation of the   |  |  |  |  |  |  |  |  |
|                  | Synthetic Turf System (the "Second  |  |  |  |  |  |  |  |  |
|                  | Benchmark Event")                   |  |  |  |  |  |  |  |  |
| Final Report     | 30 days post-completion of project  |  |  |  |  |  |  |  |  |

The report shall be a brief description of the project steps and the funds expended as of the First and Second Benchmark Events, respectively.

3. The Grantee shall inform the Foundation if the completion date is going to be delayed past the Grant Term. In the event that the completion date will be past the Grant Term, the Foundation may, at its discretion, direct the Grantee to remit to the Foundation any portion of the Grant Funds unexpended as of the termination date, along with a complete and accurate accounting of the receipt and disbursement of revenues and expenditures relating to the Grant, and the Grantee shall comply with any such direction, and after which time the Foundation shall have no further obligations with respect to the grant.

- 4. The Grantee agrees to indemnify, defend, and hold harmless the Foundation, its directors, and representatives (collectively, the "Indemnified Parties") from and against any and all claims, liabilities, losses, damages, costs, and expenses (including reasonable attorneys' fees) arising out of or related to any injury, death, or damage to property that occurs in connection with the Project. This indemnification includes, but is not limited to, claims arising from (i) any decisions made by the Grantee, including without limitation official acts of the Rye City Council, related to the Nursery Field Project; (ii) the selection, hiring and supervision of any contractors, subcontractors, or any other third party involved in the Nursery Field Project; (iii) construction or related activities undertaken in connection with the Nursery Field Project, (iii) the use, occupancy, or operation of the completed Nursery Field Project, and (iv) any negligence, misconduct, or violation of law by the Grantee, its contractors, subcontractors, or any other third party involved in the Nursery Field Project, subcontractors, subcontractors, or any negligence, misconduct, or violation of law by the Grantee, its contractors, subcontractors, or any other third party involved in the Nursery Field Project.
- 5. The Grantee shall use the Grant Funds solely in a manner consistent with the Resolution. Any Grant Funds used for purposes other than those consistent with the Resolution must be accounted for and returned to the Foundation within 60 days.
- 6. This Agreement contains the entire understanding between the parties and supersedes all prior agreements, whether oral or in writing, concerning its subject matter. Any amendment must be in writing and signed by both parties.

We are pleased to support you in this important work.

#### [REMAINDER OF PAGE LEFT INTENTIONALLY BLANK; SIGNATURES FOLLOW ON THE NEXT PAGE]

| Rye Youth Athletic Foundation         |       |  |
|---------------------------------------|-------|--|
| By:                                   | Date: |  |
| Read and agreed to by the City of Rye |       |  |
| By:                                   | Date: |  |
| Printed Name:                         |       |  |
| Title:                                |       |  |



#### RESOLUTION OF THE RYE CITY COUNCIL ACCEPTING GRANT FROM RYE YOUTH ATHLETIC FOUNDATION AND TO AUTHORIZE THE CITY MANAGER TO EXECUTE THE NECESSARY AGREEMENTS TO AWARD THE CONSTRUCTION OF A SYNTHETIC TURF FIELD AT NURSERY FIELD TO THE LOWEST RESPONSIBLE BIDDER MEETING THE REQUIREMENTS OF THE CITY COUNCIL'S MAY 1, 2024 RESOLUTION

WHEREAS, on May 1, 2024, the City Council adopted a resolution (the "May 1, 2024 Resolution") in which it outlined certain requirements for the Rye Youth Athletic Foundation, a nonprofit d/b/a Let the Kids Play ("LTKP" or the "Donor Group") to meet in order for the City to move forward with the bidding process for the construction of the synthetic turf field at Nursery Field (the "Nursery Field Project"); and

WHEREAS, the Donor Group previously offered a grant of \$100,000 for Bid Soft Costs (the "Bid Soft Cost Grant") and the City accepted same and subsequently engaged consultants to prepare the necessary construction bid documents; and

WHEREAS, as required by the May 1, 2024 Resolution, the Donor Group successfully raised an additional \$2,900,000 and provided proof that such funds were deposited into a third-party account; and

WHEREAS, the City solicited bids from companies to build the Nursery Field Project; and

WHEREAS, in accordance with the May 1, 2024 Resolution, the City retained an independent third-party lab and required all the bidders' components of the field (grass blades, shock pad, and infill) tested to identify the total fluorine content and to perform targeted testing for PFAS/PFOA to verify that such components require no warning labels under California Proposition 65 Standards; and

WHEREAS, the City received multiple bids that met the requirements of the May 1, 2024 Resolution; and

WHEREAS, the City Manager, in consultation with City staff, reached out to the property owners within 750 feet of Nursery Field to address concerns regarding non-field aesthetics and safety pursuant to the May 1, 2024 Resolution; and

WHEREAS, staff has reviewed the comments received and will be incorporating enhancements consistent with the neighborhood comments; and

WHEREAS, the non-field enhancement costs will be borne by the City and not the Donor Group; and

WHEREAS, the lowest bid that also meets the criteria set forth in the May 1, 2024 Resolution is DeRosa Sports Construction, Inc.; and

WHEREAS, the City included three bid alternates related to an infill synthetic turf containment system, a weighted windscreen, and soil disposal (required); and

WHEREAS, the City Council has determined it would like to move forward with all three bid alternates; and

WHEREAS, none of the selected bidders are "related" to any of the officers, directors or key persons of the Donor Group, as defined by the New York Not-for-Profit Corporation Law;

WHEREAS, the bid price including the three alternates is \$ 2,039,835 (Two Million Thirty-Nine Thousand Eight Hundred and Thirty-Five Dollars) (the "Bid Award"); and

WHEREAS, in addition to the Bid Award, the City anticipates that the total Nursery Field Project cost, which is comprised of (i) amounts expended prior to 2024 (\$259,030), (ii) 2024 design costs (\$88,200), (iii) lab testing costs (\$6,072), (iv) GZA soil costs (estimate of \$15,000), (v) Tenen costs (\$2,500), (vi) wetlands buffer enhancements (estimate of \$30,000), (vii) construction administration by Vision CA (\$41,000), (viii) construction administration by Ramboll CA (\$45,100), (ix) an approximately 15% contingency amount with respect to the construction costs covered by the Bid Award, the wetland enhancements and the construction administration (\$323,263) and (x) new specialized equipment for the maintenance of the synthetic turf field (estimate of \$50,000), will be approximately \$2,900,000 (Two Million Nine Hundred Thousand Dollars) (the "Final Estimate"); and

WHEREAS, the Donor Group has agreed to provide the City with additional funds to cover the Final Estimate in the form of a grant (the "Final Estimate Grant")<sup>1</sup> and the City will return any unused portion of the Final Estimate Grant to the Donor Group within 60 (sixty) days of the Nursery Field Project being complete as determined by the City Engineer; and

WHEREAS, the Donor Group and the City need to execute an agreement outlining the terms and conditions of using the Final Estimate Grant monies (the "Grant Agreement").

NOW, THEREFORE, BE IT RESOLVED, as follows:

<sup>&</sup>lt;sup>1</sup> The Final Estimate Grant is the Final Estimate less the \$100,000 previously provided to the City and is \$2,800,000.

- 1. The City Council has reviewed the Grant Agreement, attached hereto as Exhibit 1, and directs the City Manager to execute the Grant Agreement with the Donor Group.
- 2. The City Council hereby accepts the Final Estimate Grant from the Donor Group in the amount of Two Million Eight Hundred Thousand Dollars.
- 3. Any portion of the Final Estimate Grant that is not used for the construction, installation or project management of the synthetic turf field with respect to the Nursery Field Project shall be returned to the Donor Group within 60 days of project completion.
- 4. The City Council hereby finds that DeRosa Sports Construction, Inc. was the lowest responsive bidder and that its turf products comply with the requirements of the May 1, 2024 Council Resolution.
- 5. The City Council hereby directs the City Manager to execute the necessary documents awarding the bid to DeRosa Sports and to retain other professionals to complete the Nursery Field Project upon the Final Estimate Grant money being deposited into the City of Rye's account.
- 6. The City Council further directs the City Manager to transfer the necessary funds (not to exceed \$250,000) from General Fund Contingency Account to construct the non-field aesthetic and safety enhancements.

This Resolution shall take effect immediately.

Motion made by: Seconded by: Vote: Dated: Rye, New York \_\_\_\_\_, 2024



### **CITY COUNCIL AGENDA**

DEPT.: Department of Public Works

CONTACT: Ryan Coyne, City Engineer

**AGENDA ITEM:** Award bid for Theodore Fremd wall project (Contract # 2024-03)

FOR THE MEETING OF:

October 23, 2024

**RECOMMENDATION:** That the Council consider awarding the bid to the recommended bidder.

| IMPACT: | 🗌 Environmental 🛛 Fiscal 🗌 Neighborhood 🗌 Other: |  |
|---------|--------------------------------------------------|--|
|         |                                                  |  |
|         |                                                  |  |

BACKGROUND: See attached memo, bid documents and resolution.

Ryan Coyne, P.E. City Engineer 1051 Boston Post Road Rye, New York 10580



Tel: (914) 967-7464 E-mail: rcoyne@ryeny.gov http://www.ryeny.gov

### CITY OF RYE DEPARTMENT OF PUBLIC WORKS

To: Greg Usry, City Manager

From: Ryan Coyne, City Engineer

Date: October 17, 2024

**Re**: Contract 2024-03 PIN 8701.43 – Replacement of the Theodore Fremd Avenue Retaining Wall Along the Blind Brook

The City's engineering consultant, WSP, has reviewed and tabulated the bids received on October 3 for the above referenced project. A copy of the bid tabulation is attached. Eight bids were submitted ranging from approximately \$3.2M to \$5.8M.

I recommend the bid be awarded to the low bidder, ELQ Industries, Inc. in the amount of \$3,212,873.60 subject to review and approval of the Bid Award Package by the NYSDOT.

Additionally, as this project is subject to NYSDOT Local Projects Review, construction administration services are required in the amount of \$600,000 bringing the total cost of the project to approximately \$3.8M.

The NYSDOT is to reimburse the City \$777,891.19 leaving the City's portion of the project to be just over \$3M.

The existing sources of funds for this project are \$2,228,995.83 through previously authorized use of bond proceeds and capex reserve funds. It is recommended that \$800,000 of additional capex reserve funds be used to fund this project.

It is possible that portions of this work can be reimbursed through state aid sources such as State Touring Route funding and we will continue to pursue reimbursement as the project progresses, which could limit the use of the above-mentioned capex reserve funds.

#### PIN 8701.43 - Replacement of the Theodore Fremd Avenue Retaining Wall Along the Blind Brook PROJECT:

#### BID ANALYSIS SUBJECT:

| PROJECT:                     | PIN 8701.43 - Replacement of the Theodore Fremd Avenue Re                                                                                                       | etaining | Wall Along  | the Blind Brook                  |              |                          |                              |                           |                              | <b>\\S</b> D           |                             |                |                           |                             |                                                                          |                                                                         |                                                 |                        |                              |                  |                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------------------------|--------------|--------------------------|------------------------------|---------------------------|------------------------------|------------------------|-----------------------------|----------------|---------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|------------------|---------------------------|
| SUBJECT:<br>COMPLETED BY     | BID ANALYSIS<br>': JD                                                                                                                                           |          |             |                                  |              |                          |                              |                           |                              |                        |                             |                |                           |                             |                                                                          |                                                                         |                                                 |                        |                              |                  |                           |
|                              |                                                                                                                                                                 |          |             | ENG EST                          | ENG EST      |                          |                              |                           | BIDDER                       | 1: ELQ Industries, Ind |                             |                |                           | BIDDER 2: North             | brook Contracting                                                        | Corp.                                                                   |                                                 |                        | BIDDER 3: Villa              | Construction, In | с.                        |
| ITEM NO.                     | DESCRIPTION                                                                                                                                                     | UNIT     | QUANTITY    | UNIT PRICE                       | TOTAL        | AVG UNIT PRICE           | AVG Total                    | UNIT PRICE                | TOTAL                        | % DIFFERENCE           | AMT DIFFERENCE              | % OF TOTAL BID | UNIT PRICE                | TOTAL price                 | % DIFFERENCE<br>between<br>engineer's<br>estimate and<br>bid total price | AMT DIFFERENCE<br>between engineer's<br>estimate and bid total<br>price | % OF item<br>total to the<br>TOTAL BID<br>price | UNIT PRICE             | TOTAL                        | % DIFFERENCE     | AMT<br>DIFFERENCE         |
| 201.06                       |                                                                                                                                                                 | LS       | 1           | \$ 10,000.00 \$                  | 10,000.00    | \$106,166.72             | \$106,166.72                 | \$7,900.00                | \$7,900.00                   | -21.0%                 | -\$2,100.00                 | 0.2%           | \$37,694.75               | \$37,694.75                 | 276.9%                                                                   | \$27,694.75                                                             | 1.0%                                            | \$25,000.00            | \$25,000.00                  | 150%             | \$15,000.00               |
| 203.02                       | EMBANKMENT IN PLACE                                                                                                                                             | CY       | 180         | \$ 30.00 \$                      | 5,400.00     | \$164.38<br>\$147.50     | \$96,816.88                  | \$130.00<br>\$78.00       | \$76,570.00<br>\$14,040.00   | 30.0%                  | \$17,670.00<br>\$8,640.00   | 0.4%           | \$190.00                  | \$111,910.00<br>\$31,860.00 | 490.0%                                                                   | \$53,010.00<br>\$26,460.00                                              | 3.0%                                            | \$250.00               | \$147,250.00                 | 150%             | \$88,350.00<br>\$5,400.00 |
| 206.01                       | STRUCTURE EXCAVATION                                                                                                                                            | CY       | 350         | \$ 55.00 \$<br>\$ 1.000.00 \$    | 19,250.00    | \$138.13                 | \$48,343.75                  | \$142.00                  | \$49,700.00                  | 158.2%                 | \$30,450.00                 | 1.5%           | \$150.00                  | \$52,500.00                 | 172.7%                                                                   | \$33,250.00                                                             | 1.4%                                            | \$250.00               | \$87,500.00                  | 355%             | \$68,250.00               |
| 207.22                       | GEOTEXTILE DRAINAGE                                                                                                                                             | SY       | 150         | \$ 8.00 \$                       | 1,200.00     | \$19.75                  | \$2,962.50                   | \$2,900.00                | \$1,200.00                   | 0.0%                   | \$11,400.00                 | 0.0%           | \$2,500.00                | \$15,000.00                 | 75.0%                                                                    | \$9,000.00                                                              | 0.4%                                            | \$2,500.00             | \$3,000.00                   | 150%             | \$9,000.00                |
| 304.11000008                 | SUBBASE COURSE (MODIFIED)                                                                                                                                       | CY       | 230         | \$ 120.00 \$<br>\$ 135.00 \$     | 27,600.00    | \$131.88                 | \$30,331.25                  | \$100.00                  | \$23,000.00                  | -16.7%                 | -\$4,600.00                 | 0.7%           | \$120.00                  | \$27,600.00                 | 0.0%                                                                     | \$0.00                                                                  | 0.8%                                            | \$90.00                | \$20,700.00                  | -25%             | -\$6,900.00               |
| 404.1989                     | 19 F9 BINDER COURSE ASPHALT, 80 SERIES COMPACTION                                                                                                               | TON      | 114         | \$ 135.00 \$                     | 25,650.00    | \$319.63<br>\$279.38     | \$36,437.25<br>\$53,081.25   | \$172.00                  | \$19,608.00                  | 14.8%                  | \$4,218.00                  | 0.6%           | \$490.00                  | \$70,300.00                 | 174.1%                                                                   | \$40,470.00                                                             | 1.5%                                            | \$225.00               | \$42,750.00                  | 67%              | \$10,260.00               |
| 404.3789                     | 37.5 F9 BASE COURSE ASPHALT, 80 SERIES COMPACTION                                                                                                               | TON      | 10          | \$ 120.00 \$                     | 1,200.00     | \$431.63                 | \$4,316.25                   | \$600.00                  | \$6,000.00                   | 400.0%                 | \$4,800.00                  | 0.2%           | \$383.00                  | \$3,830.00                  | 219.2%                                                                   | \$2,630.00                                                              | 0.1%                                            | \$400.00               | \$4,000.00                   | 233%             | \$2,800.00                |
| 490.30                       | MISCELLANEOUS COLD MILLING OF BITUMINOUS CONCRETE                                                                                                               | SY       | 537         | \$ 10.00 \$                      | 5,370.00     | \$30.50<br>\$44.38       | \$4,087.00<br>\$23,829.38    | \$21.00<br>\$33.00        | \$2,814.00<br>\$17,721.00    | -8.7%                  | \$12,351.00                 | 0.1%           | \$13.00<br>\$51.00        | \$1,742.00<br>\$27,387.00   | 410.0%                                                                   | -\$1,340.00<br>\$22,017.00                                              | 0.0%                                            | \$10.00<br>\$25.00     | \$1,340.00<br>\$13,425.00    | -57%             | -\$1,742.00<br>\$8,055.00 |
| 520.09000010                 | SAWCUTTING ASPHALT CONCRETE                                                                                                                                     | LF       | 320         | \$ 6.00 \$                       | 1,920.00     | \$6.88                   | \$2,200.00                   | \$4.00                    | \$1,280.00                   | -33.3%                 | -\$640.00                   | 0.0%           | \$7.00                    | \$2,240.00                  | 16.7%                                                                    | \$320.00                                                                | 0.1%                                            | \$2.00                 | \$640.00                     | -67%             | -\$1,280.00               |
| 552.2001                     | HOLES IN EARTH FOR SOLDIER PILE AND LAGGING WALL<br>HOLES IN EARTH FOR SOLDIER PILE AND LAGGING WALL                                                            | LF       | 242         | \$ 370.00 \$                     | 89,540.00    | \$535.38<br>\$510.38     | \$337,286.25<br>\$123.510.75 | \$565.00<br>\$567.00      | \$355,950.00<br>\$137.214.00 | 52.7%                  | \$122,850.00<br>\$47,674.00 | 4.3%           | \$298.00<br>\$298.00      | \$187,740.00                | -19.5%                                                                   | -\$45,360.00<br>-\$17.424.00                                            | 5.1%                                            | \$500.00               | \$315,000.00<br>\$121.000.00 | 35%              | \$81,900.00               |
| 552.2101                     | ROCK SOCKETS FOR SOLDIER PILE AND LAGGING WALL                                                                                                                  | LF       | 260         | \$ 575.00 \$                     | 149,500.00   | \$1,461.25               | \$379,925.00                 | \$1,410.00                | \$366,600.00                 | 145.2%                 | \$217,100.00                | 11.4%          | \$1,600.00                | \$416,000.00                | 178.3%                                                                   | \$266,500.00                                                            | 11.3%                                           | \$1,200.00             | \$312,000.00                 | 109%             | \$162,500.00              |
| 552.2102<br>552.2201         | ROCK SOCKETS FOR SOLDIER PILE AND LAGGING WALL SOLDIER PILES FOR SOLDIER PILE AND LAGGING WALL                                                                  | LF       | 890         | \$ 575.00 \$<br>\$ 250.00 \$     | 63,250.00    | \$1,488.25<br>\$536.88   | \$163,707.50<br>\$477,818,75 | \$1,420.00<br>\$495.00    | \$156,200.00<br>\$440.550.00 | 98.0%                  | \$92,950.00<br>\$218.050.00 | 4.9%           | \$1,600.00                | \$176,000.00                | 178.3%                                                                   | \$112,750.00<br>\$249,200.00                                            | 4.8%                                            | \$1,200.00<br>\$450.00 | \$132,000.00<br>\$400.500.00 | 109%<br>80%      | \$68,750.00               |
| 552.2202                     | SOLDIER PILES FOR SOLDIER PILE AND LAGGING WALL                                                                                                                 | LF       | 352         | \$ 190.00 \$                     | 66,880.00    | \$543.13                 | \$191,180.00                 | \$500.00                  | \$176,000.00                 | 163.2%                 | \$109,120.00                | 5.5%           | \$555.00                  | \$195,360.00                | 192.1%                                                                   | \$128,480.00                                                            | 5.3%                                            | \$450.00               | \$158,400.00                 | 137%             | \$91,520.00               |
| 552.230201<br>552.230202     | UNTREATED WOOD LAGGING FOR SOLDIER PILE AND LAGGING WALL                                                                                                        | SF       | 1304        | \$ 22.00 \$<br>\$ 22.00 \$       | 28,688.00    | \$47.13                  | \$61,451.00                  | \$31.00                   | \$40,424.00<br>\$28,117.00   | 40.9%                  | \$11,736.00                 | 1.3%           | \$38.00                   | \$49,552.00                 | 2.7%                                                                     | \$20,864.00                                                             | 1.3%                                            | \$60.00                | \$78,240.00                  | 173%<br>-9%      | \$49,552.00               |
| 552.230301                   | PRECAST CONCRETE PANEL LAGGING FOR SOLDIER PILE AND LAGGING WALL                                                                                                | SF       | 1304        | \$ 95.00 \$                      | 123,880.00   | \$164.00                 | \$213,856.00                 | \$66.00                   | \$86,064.00                  | -30.5%                 | -\$37,816.00                | 2.7%           | \$95.00                   | \$123,880.00                | 0.0%                                                                     | \$0.00                                                                  | 3.4%                                            | \$350.00               | \$456,400.00                 | 268%             | \$332,520.00              |
| 553.020001<br>554.41         | COFFERDAM (TYPE 2)                                                                                                                                              | EA       | 230         | \$ 100,000.00 \$<br>\$ 115.00 \$ | 100,000.00   | \$336,437.50             | \$336,437.50                 | \$192,000.00              | \$192,000.00                 | 92.0%                  | \$92,000.00                 | 6.0%           | \$150,000.00              | \$150,000.00                | 50.0%                                                                    | \$50,000.00                                                             | 4.1%                                            | \$150,000.00           | \$150,000.00                 | 50%              | \$50,000.00               |
| 554.42                       | FILL TYPE RETAINING WALL (12'-18')                                                                                                                              | SF       | 280         | \$ 125.00 \$                     | 35,000.00    | \$260.63                 | \$72,975.00                  | \$170.00                  | \$47,600.00                  | 36.0%                  | \$12,600.00                 | 1.2%           | \$300.00                  | \$92,400.00                 | 160.9%                                                                   | \$57,400.00                                                             | 2.5%                                            | \$250.00               | \$70,000.00                  | 100%             | \$35,000.00               |
| 555.0021                     | CONCRETE FOR STRUCTURES, PERFORMANCE                                                                                                                            | CY       | 70          | \$ 650.00 \$                     | 45,500.00    | \$1,061.88               | \$74,331.25                  | \$1,300.00                | \$91,000.00                  | 100.0%                 | \$45,500.00                 | 2.8%           | \$800.00                  | \$56,000.00                 | 23.1%                                                                    | \$10,500.00                                                             | 1.5%                                            | \$900.00               | \$63,000.00                  | 38%              | \$17,500.00               |
| 556.0202                     | HOT-DIP GALVANIZING OF STRUCTURAL STEEL                                                                                                                         | LB       | 133310      | \$ 2.50 \$<br>\$ 1.00 \$         | 17,355.00    | \$5.38<br>\$0.25         | \$37,313.25<br>\$33,827,41   | \$3.00<br>\$0.32          | \$20,826.00<br>\$42,659,20   | 20.0%                  | \$3,471.00                  | 0.6%           | \$6.00<br>\$0.30          | \$41,652.00                 | 140.0%                                                                   | \$24,297.00<br>-\$93.317.00                                             | 1.1%                                            | \$15.00<br>\$0.10      | \$104,130.00<br>\$13,331.00  | 500%<br>-90%     | \$86,775.00               |
| 564.510001                   | STRUCTURAL STEEL                                                                                                                                                | LB       | 80          | \$ 25.00 \$                      | 2,000.00     | \$37.38                  | \$2,990.00                   | \$14.00                   | \$1,120.00                   | -44.0%                 | -\$880.00                   | 0.0%           | \$30.00                   | \$2,400.00                  | 20.0%                                                                    | \$400.00                                                                | 0.1%                                            | \$30.00                | \$2,400.00                   | 20%              | \$400.00                  |
| 568.51<br>568.70             | STEEL BRIDGE RAILING (FOUR-RAIL)                                                                                                                                | LF       | 115<br>54   | \$ 210.00 \$<br>\$ 150.00 \$     | 24,150.00    | \$493.13                 | \$56,709.38                  | \$580.00                  | \$66,700.00                  | 176.2%                 | \$42,550.00                 | 2.1%           | \$600.00                  | \$69,000.00                 | 185.7%                                                                   | \$44,850.00                                                             | 1.9%                                            | \$400.00               | \$46,000.00                  | 90%              | \$21,850.00               |
| 586.0301                     | DRILLING AND GROUTING BOLTS OR REINFORCING BARS WITH PULLOUT TESTS                                                                                              | EA       | 15          | \$ 85.00 \$                      | 1,275.00     | \$265.63                 | \$3,984.38                   | \$70.00                   | \$1,050.00                   | -17.6%                 | -\$225.00                   | 0.0%           | \$350.00                  | \$12,000.00                 | 841.2%                                                                   | \$10,725.00                                                             | 0.3%                                            | \$100.00               | \$1,500.00                   | 18%              | \$225.00                  |
| 603.6002                     | REINFORCED CONCRETE PIPE CLASS III, 15 INCH DIAMETER                                                                                                            | LF       | 15          | \$ 80.00 \$                      | 1,200.00     | \$228.50                 | \$3,427.50                   | \$180.00                  | \$2,700.00                   | 125.0%                 | \$1,500.00                  | 0.1%           | \$300.00                  | \$4,500.00                  | 275.0%                                                                   | \$3,300.00                                                              | 0.1%                                            | \$300.00               | \$4,500.00                   | 275%             | \$3,300.00                |
| 604.070901                   |                                                                                                                                                                 | EA       | 2           | \$ 000.00 \$                     | 1 900.00     | \$1,500.00               | \$0,000.00                   | \$1,200.00                | \$4,800.00                   | 21.1%                  | \$2,800.00                  | 0.1%           | \$1,500.00                | \$0,000.00                  | 100.0%                                                                   | \$4,000.00                                                              | 0.2%                                            | \$3,000.00             | \$12,000.00                  | 110/             | \$10,000.00               |
| 606.1001                     | BOX BEAM GUIDE RAILING WITH EXTRA LONG POSTS                                                                                                                    | LF       | 37          | \$ 35.00 \$                      | 1,295.00     | \$1,445.58               | \$4,107.00                   | \$107.00                  | \$3,959.00                   | 205.7%                 | \$2,664.00                  | 0.1%           | \$1,800.00                | \$4,440.00                  | 242.9%                                                                   | \$3,145.00                                                              | 0.1%                                            | \$1,000.00             | \$4,810.00                   | 271%             | \$3,515.00                |
| 606.120101                   | BOX BEAM END PIECE                                                                                                                                              | EA       | 2           | \$ 500.00 \$                     | 1,000.00     | \$1,218.13               | \$2,436.25                   | \$1,000.00                | \$2,000.00                   | 100.0%                 | \$1,000.00                  | 0.1%           | \$1,600.00                | \$3,200.00                  | 220.0%                                                                   | \$2,200.00                                                              | 0.1%                                            | \$1,100.00             | \$2,200.00                   | 120%             | \$1,200.00                |
| 606.73                       | RESETTING CORRUGATED BEAM GUIDERAIL<br>REMOVING AND DISPOSING BOX BEAM GUIDE RAILING                                                                            | LF       | 24          | \$ 45.00 \$<br>\$ 8.00 \$        | 1,080.00     | \$54.00                  | \$1,296.00                   | \$20.00<br>\$17.00        | \$480.00<br>\$2.040.00       | -55.6%                 | -\$600.00<br>\$1.080.00     | 0.0%           | \$65.00<br>\$30.00        | \$1,560.00                  | 275.0%                                                                   | \$480.00<br>\$2.640.00                                                  | 0.0%                                            | \$100.00<br>\$60.00    | \$2,400.00                   | 122%             | \$1,320.00                |
| 608.01050109                 | CURB RAMPS TYPE 1                                                                                                                                               | EA       | 2           | \$ 7,000.00 \$                   | 14,000.00    | \$1,520.13               | \$3,040.25                   | \$2,150.00                | \$4,300.00                   | -69.3%                 | -\$9,700.00                 | 0.1%           | \$2,000.00                | \$4,000.00                  | -71.4%                                                                   | -\$10,000.00                                                            | 0.1%                                            | \$1,000.00             | \$2,000.00                   | -86%             | -\$12,000.00              |
| 608.01050209<br>608.01050909 | CURB RAMPS TYPE 2                                                                                                                                               | EA<br>EA | 1           | \$ 7,000.00 \$                   | 7,000.00     | \$8,571.88               | \$8,571.88                   | \$4,700.00                | \$4,700.00                   | -32.9%                 | -\$2,300.00                 | 0.1%           | \$7,000.00                | \$7,000.00                  | 0.0%                                                                     | \$0.00                                                                  | 0.2%                                            | \$6,000.00             | \$6,000.00                   | -14%             | -\$1,000.00               |
| 608.02010015                 | UNCLASSIFIED EXCAVATION AND DISPOSAL UNDER CURB RAMPS                                                                                                           | CY       | 28          | \$ 250.00 \$                     | 7,000.00     | \$176.00                 | \$4,928.00                   | \$277.00                  | \$7,756.00                   | 10.8%                  | \$756.00                    | 0.2%           | \$2,000.00                | \$6,440.00                  | -8.0%                                                                    | -\$560.00                                                               | 0.1%                                            | \$20.00                | \$560.00                     | -92%             | -\$6,440.00               |
| 608.02020015                 | OPTIONAL TYPE SUBBASE COURSE UNDER CURB RAMPS                                                                                                                   | CY       | 13          | \$ 250.00 \$                     | 3,250.00     | \$131.38                 | \$1,707.88                   | \$305.00                  | \$3,965.00                   | 22.0%                  | \$715.00                    | 0.1%           | \$200.00                  | \$2,600.00                  | -20.0%                                                                   | -\$650.00                                                               | 0.1%                                            | \$50.00                | \$650.00                     | -80%             | -\$2,600.00               |
| 609.0350                     | STONE BRIDGE CURB (AS DETAILED)                                                                                                                                 | LF       | 127         | \$ 75.00 \$                      | 9,525.00     | \$519.38                 | \$2,077.50<br>\$10,795.00    | \$240.00                  | \$960.00                     | 0.0%                   | -\$640.00<br>\$0.00         | 0.0%           | \$975.00<br>\$90.00       | \$3,900.00                  | 20.0%                                                                    | \$2,300.00                                                              | 0.1%                                            | \$270.00               | \$1,080.00                   | -33%             | \$3,175.00                |
| 614.060202 614.060402        | TREE REMOVAL OVER 6 INCHES TO 12 INCHES DIAMETER BREAST HEIGHT - STUMPS CUT<br>FLUSH<br>TREE REMOVAL OVER 18 INCHES TO 24 INCHES DIAMETER BREASTHEIGHT - STUMPS | EA<br>EA | 1           | \$ 1,000.00 \$<br>\$ 1,200.00 \$ | 1,000.00     | \$1,678.75<br>\$2,556.25 | \$1,678.75<br>\$5,112.50     | \$2,100.00<br>\$3,500.00  | \$2,100.00                   | 110.0%<br>191.7%       | \$1,100.00                  | 0.1%           | \$700.00<br>\$3,200.00    | \$700.00<br>\$6,400.00      | -30.0%                                                                   | -\$300.00<br>\$4,000.00                                                 | 0.0%                                            | \$1,000.00             | \$1,000.00                   | 0%<br>25%        | \$0.00<br>\$600.00        |
| 619.01                       | CUT FLUSH<br>BASIC WORK ZONE TRAFFIC CONTROL                                                                                                                    | LS       | 1           | \$ 60,000,00 \$                  | 60.000.00    | \$332,302,86             | \$332,302,86                 | \$106.000.00              | \$106.000.00                 | 76.7%                  | \$46.000.00                 | 3.3%           | \$42,695.00               | \$42,695,00                 | -28.8%                                                                   | -\$17.305.00                                                            | 1.2%                                            | \$200.000.00           | \$200.000.00                 | 233%             | \$140.000.00              |
| 619.080102                   | REMOVE EXISTING PAVEMENT MARKING STRIPES, EPOXY PAINT                                                                                                           | LF       | 2025        | \$ 0.65 \$                       | 1,316.25     | \$2.38                   | \$4,809.38                   | \$2.00                    | \$4,050.00                   | 207.7%                 | \$2,733.75                  | 0.1%           | \$3.00                    | \$6,075.00                  | 361.5%                                                                   | \$4,758.75                                                              | 0.2%                                            | \$2.00                 | \$4,050.00                   | 208%             | \$2,733.75                |
| 619.100102<br>619.1712       | INTERIM PAVEMENT MARKING STRIPES, EPOXY PAINT<br>TEMPORARY POSITIVE BARRIER - CATEGORY 2 (PINNING PERMITTED)                                                    | LF       | 1674<br>250 | \$ 0.50 \$<br>\$ 35.00 \$        | 837.00       | \$2.33                   | \$3,892.05                   | \$1.85                    | \$3,096.90                   | 270.0%                 | \$2,259.90                  | 0.1%           | \$3.00                    | \$5,022.00                  | 500.0%                                                                   | \$4,185.00                                                              | 0.1%                                            | \$2.00                 | \$3,348.00                   | 300%             | \$2,511.00                |
| 619.1719                     | WARNING LIGHTS ON TEMPORARY POSITIVE BARRIERS                                                                                                                   | EA       | 250         | \$ 10.00 \$                      | 2,500.00     | \$44.00                  | \$11,000.00                  | \$135.00                  | \$33,750.00                  | 1250.0%                | \$31,250.00                 | 1.1%           | \$25.00                   | \$6,250.00                  | 150.0%                                                                   | \$3,750.00                                                              | 0.2%                                            | \$1.00                 | \$250.00                     | -90%             | -\$2,250.00               |
| 620.04                       | STONE FILLING (MEDIUM)                                                                                                                                          | CY       | 33          | \$ 110.00 \$                     | 3,630.00     | \$364.75                 | \$12,036.75                  | \$188.00                  | \$6,204.00                   | 70.9%                  | \$2,574.00                  | 0.2%           | \$1,500.00                | \$49,500.00                 | 1263.6%                                                                  | \$45,870.00                                                             | 1.3%                                            | \$180.00               | \$5,940.00                   | 64%              | \$2,310.00                |
| 623.12                       | CRUSHED STONE (IN-PLACE MEASURE)                                                                                                                                | CY       | 31          | \$ 75.00 \$                      | 2,325.00     | \$240.00                 | \$2,640.00<br>\$6,103.13     | \$200.00                  | \$2,200.00                   | 240.0%                 | \$1,265.00                  | 0.1%           | \$325.00                  | \$3,575.00                  | 480.0%                                                                   | \$2,640.00                                                              | 0.1%                                            | \$200.00               | \$2,200.00                   | 135%             | \$3,255.00                |
| 625.01                       |                                                                                                                                                                 | LS       | 1           | \$ 13,000.00 \$                  | 13,000.00    | \$94,861.88              | \$94,861.88                  | \$33,000.00               | \$33,000.00                  | 153.8%                 | \$20,000.00                 | 1.0%           | \$62,695.00               | \$62,695.00                 | 382.3%                                                                   | \$49,695.00                                                             | 1.7%                                            | \$70,000.00            | \$70,000.00                  | 438%             | \$57,000.00               |
| 634.99020017                 | VIBRATION MONITORING (NON-BLASTING)                                                                                                                             | LS       | 1           | \$ 18,000.00 \$                  | 18,000.00    | \$20,509.38              | \$20,509.38<br>\$35,375.00   | \$5,000.00<br>\$35.000.00 | \$5,000.00<br>\$35.000.00    | -50.0%                 | -\$5,000.00<br>\$17.000.00  | 0.2%           | \$5,000.00<br>\$30.000.00 | \$5,000.00                  | 66.7%                                                                    | -\$5,000.00<br>\$12.000.00                                              | 0.1%                                            | \$5,000.00             | \$5,000.00<br>\$20.000.00    | -50%<br>11%      | -\$5,000.00               |
| 635.0103                     | CLEANING AND PREPARATION OF PAVEMENT SURFACES - LINES                                                                                                           | LF       | 450         | \$ 1.00 \$                       | 450.00       | \$2.50                   | \$1,125.00                   | \$2.00                    | \$900.00                     | 100.0%                 | \$450.00                    | 0.0%           | \$4.00                    | \$1,800.00                  | 300.0%                                                                   | \$1,350.00                                                              | 0.0%                                            | \$2.00                 | \$900.00                     | 100%             | \$450.00                  |
| 637.11<br>637.34             | ENGINEER'S FIELD OFFICE - TYPE 1<br>OFFICE TECHNOLOGY AND SUPPLIES                                                                                              | DC       | 2500        | \$ 1,800.00 \$<br>\$ 1.00 \$     | 2.500.00     | \$4,378.13<br>\$1.00     | \$35,025.00                  | \$4,200.00<br>\$1.00      | \$33,600.00                  | 133.3%                 | \$19,200.00                 | 0.1%           | \$2,300.00<br>\$1.00      | \$18,400.00                 | 0 27.8%                                                                  | \$4,000.00<br>\$0.00                                                    | 0.5%                                            | \$7,000.00<br>\$1.00   | \$56,000.00<br>\$2,500.00    | 289%             | \$41,600.00               |
| 645.5101                     | GROUND MOUNTED SIGN PANELS WITHOUT Z-BARS                                                                                                                       | SF       | 15          | \$ 35.00 \$                      | 525.00       | \$93.38                  | \$1,400.63                   | \$70.00                   | \$1,050.00                   | 100.0%                 | \$525.00                    | 0.0%           | \$190.00                  | \$2,850.00                  | 442.9%                                                                   | \$2,325.00                                                              | 0.1%                                            | \$100.00               | \$1,500.00                   | 186%             | \$975.00                  |
| 645.5102<br>645.81           | GROUND MOUNTED SIGN PANELS LESS THAN OR EQUAL TO 32 SF WITH Z-BARS                                                                                              | SF       | 18.75       | \$ 40.00 \$<br>\$ 175.00 \$      | 750.00       | \$95.50                  | \$1,790.63                   | \$76.00                   | \$1,425.00                   | 90.0%                  | \$675.00                    | 0.0%           | \$115.00                  | \$2,156.25                  | 187.5%                                                                   | \$1,406.25                                                              | 0.1%                                            | \$200.00               | \$3,750.00                   | 400%             | \$3,000.00                |
| 655.05010008                 | STANDARD SANITARY MANHOLE FRAMES AND COVERS (CASTINGS)                                                                                                          | EA       | 1           | \$ 1,200.00 \$                   | 1,200.00     | \$1,771.88               | \$1,771.88                   | \$1,300.00                | \$1,300.00                   | 8.3%                   | \$1,350.00                  | 0.1%           | \$400.00                  | \$1,800.00                  | 50.0%                                                                    | \$600.00                                                                | 0.1%                                            | \$1,500.00             | \$1,500.00                   | 25%              | \$300.00                  |
| 655.0901                     | PARALLEL BAR FRAME 10 PCB & PARALLEL BAR GRATE 10 PCB                                                                                                           | EA       | 1           | \$ 1,100.00 \$                   | 1,100.00     | \$1,863.50               | \$1,863.50                   | \$1,500.00                | \$1,500.00                   | 36.4%                  | \$400.00                    | 0.0%           | \$2,000.00                | \$2,000.00                  | 81.8%                                                                    | \$900.00                                                                | 0.1%                                            | \$2,500.00             | \$2,500.00                   | 127%             | \$1,400.00                |
| 660.65000101                 | ALTERING UTILITY MANHOLES AND VAULTS                                                                                                                            | EA       | 1           | \$ 1,000.00 \$                   | 1,000.00     | \$2,200.00<br>\$1,423.13 | \$2,200.00<br>\$1,423.13     | \$2,000.00                | \$2,000.00                   | -40.0%                 | -\$400.00                   | 0.1%           | \$2,500.00                | \$2,500.00                  | 50.0%                                                                    | \$1,400.00                                                              | 0.1%                                            | \$2,500.00             | \$2,500.00                   | 127%             | \$1,400.00                |
| 662.60020008                 | ADJUST VALVE BOXES FOR RESURFACING WORK (GAS)                                                                                                                   | EA       | 8           | \$ 450.00 \$                     | 3,600.00     | \$322.50                 | \$2,580.00                   | \$80.00                   | \$640.00                     | -82.2%                 | -\$2,960.00                 | 0.0%           | \$500.00                  | \$4,000.00                  | 11.1%                                                                    | \$400.00                                                                | 0.1%                                            | \$500.00               | \$4,000.00                   | 11%              | \$400.00                  |
| 663.33<br>680.5001           | ADJUST EXISTING VALVE BOX ELEVATION POLE EXCAVATION AND CONCRETE FOUNDATION                                                                                     | EA<br>CY | 2           | \$ 450.00 \$<br>\$ 2.000.00 \$   | 4.000.00     | \$441.25<br>\$2.320.63   | \$882.50<br>\$4.641.25       | \$80.00<br>\$2.300.00     | \$160.00<br>\$4.600.00       | -82.2%                 | -\$740.00<br>\$600.00       | 0.0%           | \$500.00<br>\$2.000.00    | \$1,000.00                  | 0 11.1%                                                                  | \$100.00<br>\$0.00                                                      | 0.0%                                            | \$500.00<br>\$2,000.00 | \$1,000.00<br>\$4,000.00     | 11%              | \$100.00                  |
| 680.6808                     | TRAFFIC SIGNAL POLE-BRACKET MOUNT 8 FEET MOUNTING HEIGHT                                                                                                        | EA       | 1           | \$ 1,500.00 \$                   | 1,500.00     | \$3,681.25               | \$3,681.25                   | \$2,700.00                | \$2,700.00                   | 80.0%                  | \$1,200.00                  | 0.1%           | \$8,000.00                | \$8,000.00                  | 433.3%                                                                   | \$6,500.00                                                              | 0.2%                                            | \$1,500.00             | \$1,500.00                   | 0%               | \$0.00                    |
| 680.81<br>680.8220           | SOLAR POWER SYSTEM                                                                                                                                              | EA<br>EA | 2           | \$ 1,500.00 \$<br>\$ 7,500.00 \$ | 3,000.00     | \$4,550.63               | \$9,101.25                   | \$1,100.00                | \$2,200.00                   | -26.7%                 | -\$800.00                   | 0.1%           | \$5,000.00                | \$10,000.00                 | 233.3%                                                                   | \$7,000.00                                                              | 0.3%                                            | \$2,500.00             | \$5,000.00                   | 67%              | \$2,000.00                |
| 680.8223                     | BREAKAWAY TRANSFORMER BASE                                                                                                                                      | EA       | 2           | \$ 850.00 \$                     | 1,700.00     | \$6,131.25<br>\$1,200.00 | \$2,400.00                   | \$7,450.00                | \$1,400.00                   | -17.6%                 | -\$100.00                   | 0.0%           | \$1,200.00                | \$12,000.00                 | 41.2%                                                                    | \$700.00                                                                | 0.3%                                            | \$2,500.00             | \$5,000.00                   | 194%             | \$3,300.00                |
| 685.0101                     | WHITE EPOXY REFLECTORIZED PAVEMENT STRIPES - 15 MILS                                                                                                            | LF       | 1190        | \$ 1.00 \$                       | 1,190.00     | \$2.22                   | \$2,640.31                   | \$1.90                    | \$2,261.00                   | 90.0%                  | \$1,071.00                  | 0.1%           | \$3.00                    | \$3,570.00                  | 200.0%                                                                   | \$2,380.00                                                              | 0.1%                                            | \$1.00                 | \$1,190.00                   | 0%               | \$0.00                    |
| 697.03                       | FIELD CHANGE PAYMENT                                                                                                                                            | DC       | 1193        | \$ 1.00 \$<br>\$ 1.00 \$         | 1,193.00     | \$1.88<br>\$1.00         | \$2,236.88<br>\$127.000.00   | \$1.50<br>\$1.00          | \$1,789.50<br>\$127.000.00   | 50.0%<br>0.0%          | \$596.50<br>\$0,00          | 0.1%           | \$3.00<br>\$1.00          | \$3,579.00                  | 200.0%                                                                   | \$2,386.00<br>\$0,00                                                    | 0.1%                                            | \$1.00<br>\$1.00       | \$1,193.00<br>\$127.000.00   | 0%               | \$0.00<br>\$0.00          |
| 698.04                       | ASPHALT PRICE ADJUSTMENT                                                                                                                                        | DC       | 600         | \$ 1.00 \$                       | 600.00       | \$1.00                   | \$600.00                     | \$1.00                    | \$600.00                     | 0.0%                   | \$0.00                      | 0.0%           | \$1.00                    | \$600.00                    | 0.0%                                                                     | \$0.00                                                                  | 0.0%                                            | \$1.00                 | \$600.00                     | 0%               | \$0.00                    |
| 698.05<br>698.06             | HUEL PRICE ADJUSTMENT                                                                                                                                           | DC       | 250<br>100  | \$ 1.00 \$<br>\$ 1.00 \$         | 250.00       | \$1.00                   | \$250.00                     | \$1.00                    | \$250.00                     | 0.0%                   | \$0.00                      | 0.0%           | \$1.00                    | \$250.00                    | 0.0%                                                                     | \$0.00                                                                  | 0.0%                                            | \$1.00                 | \$250.00                     | 0%               | \$0.00                    |
| 699.040001                   | MOBILIZATION (4%)                                                                                                                                               | LS       | 1           | \$ 73,000.00 \$                  | 73,000.00    | \$154,450.38             | \$154,450.38                 | \$120,000.00              | \$120,000.00                 | 64.4%                  | \$47,000.00                 | 3.7%           | \$129,000.00              | \$129,000.00                | 76.7%                                                                    | \$56,000.00                                                             | 3.5%                                            | \$139,653.00           | \$139,653.00                 | 91%              | \$66,653.00               |
|                              |                                                                                                                                                                 | I        |             | BASE BID TOTAL \$                | 2,011,905.25 |                          | \$4,123,945.97               | BASE BID TOTAL            | \$3,212,873.60               |                        |                             |                | BASE BID TOTAL            | \$3,363,000.00              | <u> </u>                                                                 |                                                                         | Ţ                                               | BASE BID TOTAL         | \$3,673,000.00               |                  |                           |

|                   | BIDDER 4: McNameee Construction Corp. |                             |                  |                                      |                                                                                 |                                                 |                  |                                          |                           |                                                         |                      |                             |                   |                                   |                             |              |                             |                   |                              |                              |               |                             |
|-------------------|---------------------------------------|-----------------------------|------------------|--------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|------------------|------------------------------------------|---------------------------|---------------------------------------------------------|----------------------|-----------------------------|-------------------|-----------------------------------|-----------------------------|--------------|-----------------------------|-------------------|------------------------------|------------------------------|---------------|-----------------------------|
|                   |                                       |                             |                  |                                      |                                                                                 | BIDDER 5: Scape-Tech Landscape Technology, Inc. |                  |                                          |                           | BIDDER 6: Harrison & Burrowes Bridge Constructors, Inc. |                      |                             |                   | BIDDER 7: Inter Contracting Corp. |                             |              |                             |                   | BIDDER 8: Transit-Halmar J/V |                              |               |                             |
| % OF TOTAL<br>BID | UNIT PRICE                            | TOTAL                       | % DIFFERENCE     | AMT DIFFERENCE % OI                  | UNIT PRICE                                                                      | TOTAL                                           | % DIFFERENCE     | AMT DIFFERENCE % OF TOTA<br>BID          | L UNIT PRICE              | TOTAL                                                   | % DIFFERENCE         | AMT DIFFERENCE              | % OF TOTAL<br>BID | UNIT PRICE                        | TOTAL                       | % DIFFERENC  | CE AMT<br>DIFFERENCE        | % OF TOTAL<br>BID | UNIT PRICE                   | TOTAL                        | % DIFFERENCE  | AMT DIFFERENCE              |
| 0.6%              | \$105,000.00                          | \$105,000.00                | 950.0%           | \$95,000.00 1.8%                     | \$ \$22,950.0                                                                   | 0 \$22,950.00                                   | 129.5%           | \$12,950.00 #REF!                        | \$120,000.00              | \$120,000.00                                            | 0 1100.0%            | \$110,000.00                | 3.6%              | \$30,789.00                       | \$30,789.00                 | 208%         | \$20,789.00                 | 0.8%              | \$500,000.00                 | \$500,000.00                 | 4900%         | \$490,000.00                |
| 3.8%<br>0.3%      | \$175.00<br>\$125.00                  | \$103,075.00<br>\$22,500.00 | 75.0%<br>316.7%  | \$44,175.00 1.8%<br>\$17,100.00 0.4% | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$    | 0 \$73,625.00<br>0 \$41,400.00                  | 25.0%<br>666.7%  | \$14,725.00 #REF!<br>\$36,000.00 #REF!   | \$70.00<br>\$110.00       | \$41,230.00<br>\$19,800.00                              | -30.0%<br>266.7%     | -\$17,670.00<br>\$14,400.00 | 1.2%<br>0.6%      | \$275.00<br>\$300.00              | \$161,975.00<br>\$54,000.00 | 900%         | \$103,075.00<br>\$48,600.00 | 4.1%              | \$100.00<br>\$100.00         | \$58,900.00<br>\$18,000.00   | 0%<br>233%    | \$0.00<br>\$12,600.00       |
| 2.2%              | \$175.00<br>\$8,000.00                | \$61,250.00<br>\$48,000.00  | 218.2%<br>700.0% | \$42,000.00 1.0%<br>\$42,000.00 0.8% | \$\$93.0<br>\$\$\$2,335.0                                                       | 0 \$32,550.00<br>0 \$14,010.00                  | 69.1%<br>133.5%  | \$13,300.00 #REF!<br>\$8,010.00 #REF!    | \$70.00<br>\$10,000.00    | \$24,500.00                                             | 27.3%<br>900.0%      | \$5,250.00<br>\$54,000.00   | 0.7%              | \$175.00<br>\$3,500.00            | \$61,250.00<br>\$21,000.00  | 218%         | \$42,000.00<br>\$15,000.00  | 1.6%              | \$50.00<br>\$3,000.00        | \$17,500.00<br>\$18,000.00   | -9%<br>200%   | -\$1,750.00<br>\$12,000.00  |
| 0.1%              | \$37.00                               | \$5,550.00                  | 362.5%           | \$4,350.00 0.1%                      | \$10.0                                                                          | 0 \$1,500.00                                    | 25.0%            | \$300.00 #REF!                           | \$7.00                    | \$1,050.00                                              | -12.5%               | -\$150.00                   | 0.0%              | \$60.00                           | \$9,000.00                  | 650%         | \$7,800.00                  | 0.2%              | \$2.00                       | \$300.00                     | -75%          | -\$900.00                   |
| 0.5%              | \$125.00                              | \$28,750.00                 | 4.2%             | \$1,150.00 0.5%                      | \$ \$142.0                                                                      | 0 \$32,660.00<br>\$44,460.00                    | 18.3%            | \$29,070.00 #REF!                        | \$118.00                  | \$27,140.00                                             | ) -1.7%<br>) 185.2%  | \$28,500.00                 | 0.8%              | \$250.00                          | \$57,500.00<br>\$42,750.00  | 108%         | \$29,900.00                 | 1.5%              | \$110.00                     | \$25,300.00<br>\$25,080.00   | -8%<br>63%    | \$9,690.00                  |
| 1.1%              | \$275.00<br>\$275.00                  | \$52,250.00<br>\$2,750.00   | 103.7%<br>129.2% | \$26,600.00 0.9%<br>\$1,550.00 0.0%  | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$    | 0 \$53,200.00<br>0 \$5,700.00                   | 107.4%<br>375.0% | \$27,550.00 #REF!<br>\$4,500.00 #REF!    | \$330.00                  | \$62,700.00                                             | 0 144.4%<br>0 316.7% | \$37,050.00<br>\$3,800.00   | 1.9%<br>0.1%      | \$400.00<br>\$425.00              | \$76,000.00<br>\$4,250.00   | 196%<br>254% | \$50,350.00<br>\$3,050.00   | 1.9%              | \$200.00<br>\$300.00         | \$38,000.00<br>\$3,000.00    | 48%<br>150%   | \$12,350.00<br>\$1,800.00   |
| 0.0%              | \$30.00                               | \$4,020.00                  | 30.4%            | \$938.00 0.1%                        | \$40.0                                                                          | 0 \$5,360.00                                    | 73.9%            | \$2,278.00 #REF!                         | \$40.00                   | \$5,360.00                                              | 73.9%                | \$2,278.00                  | 0.2%              | \$45.00                           | \$6,030.00                  | 96%          | \$2,948.00                  | 0.2%              | \$45.00                      | \$6,030.00                   | 96%           | \$2,948.00                  |
| 0.3%              | \$10.00                               | \$3,200.00                  | 66.7%            | \$1,280.00 0.1%                      | \$ \$38.0<br>\$ \$4.0                                                           | 0 \$1,280.00                                    | -33.3%           | -\$640.00 #REF!                          | \$6.00                    | \$1,920.00                                              | 0.0%                 | \$20,850.00                 | 0.1%              | \$12.00                           | \$3,840.00                  | 100%         | \$1,920.00                  | 0.1%              | \$10.00                      | \$3,200.00                   | 67%           | \$1,280.00                  |
| 8.1%              | \$400.00<br>\$400.00                  | \$252,000.00<br>\$96,800.00 | 8.1%<br>8.1%     | \$18,900.00 4.3%<br>\$7,260.00 1.7%  | \$ \$960.0<br>\$ \$758.0                                                        | 0 \$604,800.00<br>0 \$183,436.00                | 159.5%           | \$371,700.00 #REF!<br>\$93,896.00 #REF!  | \$600.00<br>\$600.00      | \$378,000.00<br>\$145,200.00                            | 62.2%<br>62.2%       | \$144,900.00<br>\$55,660.00 | 4.3%              | \$395.00<br>\$395.00              | \$248,850.00<br>\$95,590.00 | 7%           | \$15,750.00<br>\$6,050.00   | 6.4%<br>2.4%      | \$565.00<br>\$565.00         | \$355,950.00<br>\$136,730.00 | 53%<br>53%    | \$122,850.00<br>\$47,190.00 |
| 8.0%              | \$850.00                              | \$221,000.00                | 47.8%            | \$71,500.00 3.8%                     | \$ \$1,880.0<br>\$2,000.0                                                       | 0 \$488,800.00<br>\$220,000,00                  | 227.0%           | \$339,300.00 #REF!<br>\$156,750,00 #REF! | \$1,100.00                | \$286,000.00                                            | 91.3%                | \$136,500.00                | 8.5%              | \$2,500.00                        | \$650,000.00                | 335%         | \$500,500.00                | 16.6%             | \$1,150.00                   | \$299,000.00                 | 100%          | \$149,500.00                |
| 10.3%             | \$440.00                              | \$391,600.00                | 76.0%            | \$169,100.00 6.7%                    | \$ \$480.0                                                                      | 0 \$427,200.00                                  | 92.0%            | \$204,700.00 #REF!                       | \$650.00                  | \$578,500.00                                            | 160.0%               | \$356,000.00                | 17.2%             | \$750.00                          | \$667,500.00                | 200%         | \$445,000.00                | 17.1%             | \$500.00                     | \$445,000.00                 | 100%          | \$222,500.00                |
| 4.1%              | \$440.00<br>\$52.00                   | \$154,880.00<br>\$67,808.00 | 131.6%<br>136.4% | \$88,000.00 2.7%<br>\$39,120.00 1.2% | \$ \$500.0<br>\$ \$66.0                                                         | 0 \$176,000.00<br>0 \$86,064.00                 | 163.2%           | \$109,120.00 #REF!<br>\$57,376.00 #REF!  | \$650.00<br>\$60.00       | \$228,800.00<br>\$78,240.00                             | 242.1%               | \$161,920.00<br>\$49,552.00 | 6.8%              | \$750.00<br>\$35.00               | \$264,000.00<br>\$45,640.00 | 295%         | \$197,120.00<br>\$16,952.00 | 6.8%<br>1.2%      | \$500.00<br>\$35.00          | \$176,000.00<br>\$45,640.00  | 163%<br>59%   | \$109,120.00<br>\$16,952.00 |
| 0.5%              | \$52.00                               | \$47,164.00                 | 136.4%           | \$27,210.00 0.8%                     | \$66.0                                                                          | 0 \$59,862.00                                   | 200.0%           | \$39,908.00 #REF!                        | \$40.00                   | \$36,280.00                                             | 81.8%                | \$16,326.00                 | 1.1%              | \$35.00                           | \$31,745.00                 | 59%          | \$11,791.00                 | 0.8%              | \$40.00                      | \$36,280.00                  | 82%           | \$16,326.00                 |
| 3.8%              | \$415,000.00                          | \$415,000.00                | 315.0%           | \$315,000.00 7.1%                    | \$ \$232,500.0                                                                  | 0 \$232,500.00                                  | 132.5%           | \$132,500.00 #REF!                       | \$130.00                  | \$155,000.00                                            | 100.0%               | \$100,000.00                | 5.9%              | \$180.00                          | \$219,000.00                | 119%         | \$119,000.00                | 5.6%              | \$1,133,000.00               | \$1,133,000.00               | 1033%         | \$1,033,000.00              |
| 1.2%              | \$290.00<br>\$290.00                  | \$66,700.00<br>\$81,200.00  | 152.2%<br>132.0% | \$40,250.00 1.1%<br>\$46,200.00 1.4% | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$    | 0 \$36,340.00<br>0 \$44,800.00                  | 37.4%            | \$9,890.00 #REF!<br>\$9,800.00 #REF!     | \$185.00<br>\$185.00      | \$42,550.00                                             | 0 60.9%<br>0 48.0%   | \$16,100.00<br>\$16,800.00  | 1.3%              | \$300.00<br>\$300.00              | \$69,000.00<br>\$84,000.00  | 161%         | \$42,550.00<br>\$49,000.00  | 1.8%              | \$400.00<br>\$400.00         | \$92,000.00<br>\$112,000.00  | 248%          | \$65,550.00<br>\$77,000.00  |
| 1.6%              | \$700.00                              | \$49,000.00                 | 7.7%             | \$3,500.00 0.8%                      | \$695.0                                                                         | 0 \$48,650.00<br>\$20,826.00                    | 6.9%             | \$3,150.00 #REF!                         | \$950.00                  | \$66,500.00                                             | 46.2%                | \$21,000.00                 | 2.0%              | \$2,500.00                        | \$175,000.00                | 285%         | \$129,500.00                | 4.5%              | \$650.00                     | \$45,500.00                  | 0%            | \$0.00                      |
| 0.3%              | \$4.00                                | \$39,993.00                 | -70.0%           | -\$93,317.00 0.7%                    | 5 \$5.0<br>5 \$0.4                                                              | 0 \$53,324.00                                   | -60.0%           | -\$79,986.00 #REF!                       | \$0.01                    | \$27,768.00                                             | ) -99.0%             | -\$131,976.90               | 0.8%              | \$4.00                            | \$66,655.00                 | -50%         | -\$66,655.00                | 1.7%              | \$4.00                       | \$13,331.00                  | -90%          | -\$119,979.00               |
| 0.1%              | \$40.00<br>\$500.00                   | \$3,200.00<br>\$57,500.00   | 60.0%<br>138.1%  | \$1,200.00 0.1%<br>\$33,350.00 1.0%  | \$ \$45.0<br>\$ \$45.0                                                          | 0 \$3,600.00<br>0 \$5,175.00                    | 80.0%            | \$1,600.00 #REF!<br>-\$18,975.00 #REF!   | \$25.00<br>\$550.00       | \$2,000.00<br>\$63,250.00                               | 0 0.0%               | \$0.00<br>\$39,100.00       | 0.1%              | \$75.00<br>\$800.00               | \$6,000.00<br>\$92,000.00   | 200%         | \$4,000.00<br>\$67,850.00   | 0.2%              | \$40.00<br>\$470.00          | \$3,200.00<br>\$54,050.00    | 60%<br>124%   | \$1,200.00<br>\$29,900.00   |
| 0.5%              | \$275.00                              | \$14,850.00                 | 83.3%            | \$6,750.00 0.3%                      | \$280.0                                                                         | 0 \$15,120.00                                   | 86.7%            | \$7,020.00 #REF!                         | \$300.00                  | \$16,200.00                                             | 100.0%               | \$8,100.00                  | 0.5%              | \$550.00                          | \$29,700.00                 | 267%         | \$21,600.00                 | 0.8%              | \$255.00                     | \$13,770.00                  | 70%           | \$5,670.00                  |
| 0.1%              | \$75.00                               | \$4,500.00                  | -6.3%            | -\$75.00 0.0%                        | \$ \$288.0                                                                      | 0 \$4,320.00                                    | 260.0%           | \$3,120.00 #REF!                         | \$265.00                  | \$3,975.00                                              | 231.3%               | \$4,350.00                  | 0.2%              | \$155.00                          | \$2,325.00                  | 94%          | \$1,125.00                  | 0.1%              | \$265.00                     | \$3,975.00                   | 231%          | \$2,775.00                  |
| 0.3%              | \$500.00                              | \$2,000.00                  | 0.0%             | \$0.00 0.0%                          | \$ \$1,100.0                                                                    | \$4,400.00                                      | 120.0%           | \$2,400.00 #REF!                         | \$1,100.00                | \$4,400.00                                              | 120.0%               | \$2,400.00                  | 0.1%              | \$2,400.00                        | \$9,600.00                  | 380%         | \$7,600.00                  | 0.2%              | \$1,200.00                   | \$4,800.00                   | 140%          | \$2,800.00                  |
| 0.1%              | \$800.00<br>\$100.00                  | \$1,600.00<br>\$3,700.00    | -11.1%<br>185.7% | -\$200.00 0.0%<br>\$2,405.00 0.1%    | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$    | 0 \$3,016.00<br>0 \$3,700.00                    | 67.6%<br>185.7%  | \$1,216.00 #REF!<br>\$2,405.00 #REF!     | \$500.00<br>\$95.00       | \$1,000.00                                              | 0 -44.4%<br>0 171.4% | -\$800.00<br>\$2,220.00     | 0.0%              | \$3,300.00<br>\$145.00            | \$6,600.00<br>\$5,365.00    | 267%         | \$4,800.00<br>\$4,070.00    | 0.2%              | \$2,035.00<br>\$91.00        | \$4,070.00<br>\$3,367.00     | 126%<br>160%  | \$2,270.00<br>\$2,072.00    |
| 0.1%              | \$1,200.00                            | \$2,400.00                  | 140.0%           | \$1,400.00 0.0%                      | \$ \$1,230.0                                                                    | 0 \$2,460.00<br>\$1,320.00                      | 146.0%           | \$1,460.00 #REF!<br>\$240.00 #REF!       | \$1,200.00                | \$2,400.00                                              | 140.0%               | \$1,400.00                  | 0.1%              | \$1,300.00<br>\$27.00             | \$2,600.00                  | 160%         | \$1,600.00                  | 0.1%              | \$1,115.00                   | \$2,230.00                   | 123%          | \$1,230.00                  |
| 0.2%              | \$30.00                               | \$3,000.00                  | 212.5%           | \$120.00 0.0%                        | \$ \$18.0                                                                       | 0 \$2,160.00                                    | 125.0%           | \$1,200.00 #REF!                         | \$10.00                   | \$1,200.00                                              | 25.0%                | \$480.00                    | 0.0%              | \$24.00                           | \$2,880.00                  | 200%         | \$1,920.00                  | 0.1%              | \$32.00                      | \$3,840.00                   | 300%          | \$120.00                    |
| 0.1%              | \$2,000.00<br>\$2,000.00              | \$4,000.00                  | -71.4%           | -\$10,000.00 0.1%                    | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$    | 0 \$3,850.00<br>0 \$3,675.00                    | -72.5%           | -\$10,150.00 #REF!<br>-\$3,325.00 #REF!  | \$1.00<br>\$11,500.00     | \$2.00                                                  | 0 -100.0%<br>0 64.3% | -\$13,998.00<br>\$4,500.00  | 0.0%              | \$360.00<br>\$28,000.00           | \$720.00<br>\$28,000.00     | -95%<br>300% | -\$13,280.00<br>\$21,000.00 | 0.0%              | \$2,725.00<br>\$5,700.00     | \$5,450.00<br>\$5,700.00     | -61%<br>-19%  | -\$8,550.00<br>-\$1,300.00  |
| 0.0%              | \$2,000.00                            | \$2,000.00                  | -71.4%           | -\$5,000.00 0.0%                     | \$ \$3,675.0                                                                    | 0 \$3,675.00                                    | -47.5%           | -\$3,325.00 #REF!                        | \$1.00                    | \$1.00                                                  | -100.0%              | -\$6,999.00                 | 0.0%              | \$500.00                          | \$500.00                    | -93%         | -\$6,500.00                 | 0.0%              | \$5,700.00                   | \$5,700.00                   | -19%          | -\$1,300.00                 |
| 0.0%              | \$100.00                              | \$2,800.00                  | -60.0%           | -\$1,950.00 0.0%                     | \$ \$126.0                                                                      | 0 \$1,638.00                                    | -49.6%           | -\$1,612.00 #REF!                        | \$125.00                  | \$1,625.00                                              | -50.0%               | -\$1,625.00                 | 0.1%              | \$50.00                           | \$650.00                    | -80%         | -\$2,600.00                 | 0.0%              | \$95.00                      | \$1,500.00                   | -62%          | -\$2,015.00                 |
| 0.0%              | \$1,000.00<br>\$140.00                | \$4,000.00<br>\$17,780.00   | 150.0%<br>86.7%  | \$2,400.00 0.1%<br>\$8,255.00 0.3%   | \$\$\$550.0<br>\$\$\$\$60.0                                                     | 0 \$2,200.00<br>0 \$7,620.00                    | 37.5%            | \$600.00 #REF!<br>-\$1,905.00 #REF!      | \$300.00<br>\$60.00       | \$1,200.00                                              | -25.0%               | -\$400.00<br>-\$1,905.00    | 0.0%              | \$350.00<br>\$75.00               | \$1,400.00<br>\$9,525.00    | 0 -13%       | -\$200.00<br>\$0.00         | 0.0%              | \$470.00<br>\$80.00          | \$1,880.00<br>\$10,160.00    | 18%<br>7%     | \$280.00<br>\$635.00        |
| 0.0%              | \$1,500.00                            | \$1,500.00                  | 50.0%            | \$500.00 0.0%                        | \$\$880.0                                                                       | \$880.00                                        | -12.0%           | -\$120.00 #REF!                          | \$750.00                  | \$750.00                                                | -25.0%               | -\$250.00                   | 0.0%              | \$3,500.00                        | \$3,500.00                  | 250%         | \$2,500.00                  | 0.1%              | \$3,000.00                   | \$3,000.00                   | 200%          | \$2,000.00                  |
| 0.1%              | \$2,500.00                            | \$5,000.00                  | 108.3%           | \$2,600.00 0.1%                      | \$\$1,650.0                                                                     | \$3,300.00                                      | 37.5%            | \$900.00 #REF!                           | \$1,600.00                | \$3,200.00                                              | 33.3%                | \$800.00                    | 0.1%              | \$3,500.00                        | \$7,000.00                  | 192%         | \$4,600.00                  | 0.2%              | \$3,000.00                   | \$6,000.00                   | 150%          | \$3,600.00                  |
| 5.1%              | \$370,168.50                          | \$370,168.50                | 516.9%           | \$310,168.50 6.3%                    | \$ \$148,000.0                                                                  | 0 \$148,000.00                                  | 146.7%           | \$88,000.00 #REF!                        | \$646,559.34              | \$646,559.34                                            | 977.6%               | \$586,559.34                | 19.2%             | \$395,000.00                      | \$395,000.00                | 558%         | \$335,000.00                | 10.1%             | \$750,000.00                 | \$750,000.00                 | 1150%         | \$690,000.00                |
| 0.1%              | \$3.00                                | \$5,022.00                  | 500.0%           | \$4,185.00 0.1%                      | \$ \$2.0                                                                        | 0 \$3,348.00                                    | 300.0%           | \$2,511.00 #REF!                         | \$2.00                    | \$3,348.00                                              | 300.0%               | \$2,511.00                  | 0.1%              | \$3.00                            | \$5,022.00                  | 500%         | \$4,185.00                  | 0.1%              | \$1.75                       | \$2,929.50                   | 250%          | \$2,092.50                  |
| 0.4%              | \$75.00<br>\$10.00                    | \$18,750.00<br>\$2,500.00   | 114.3%<br>0.0%   | \$10,000.00 0.3%                     | \$ \$132.0<br>\$ \$5.0                                                          | 0 \$33,000.00<br>0 \$1,250.00                   | 277.1%           | \$24,250.00 #REF!<br>-\$1,250.00 #REF!   | \$35.00                   | \$8,750.00                                              | 0 0.0%               | \$0.00                      | 0.3%              | \$60.00<br>\$80.00                | \$15,000.00<br>\$20,000.00  | 71%          | \$6,250.00<br>\$17,500.00   | 0.4%              | \$105.00<br>\$95.00          | \$26,250.00<br>\$23,750.00   | 200% 850%     | \$17,500.00<br>\$21,250.00  |
| 0.2%              | \$150.00                              | \$4,950.00                  | 36.4%            | \$1,320.00 0.1%                      | \$ \$260.0                                                                      | 0 \$8,580.00                                    | 136.4%           | \$4,950.00 #REF!                         | \$200.00                  | \$6,600.00                                              | 81.8%                | \$2,970.00                  | 0.2%              | \$125.00                          | \$4,125.00                  | 14%          | \$495.00                    | 0.1%              | \$315.00                     | \$10,395.00                  | 186%          | \$6,765.00                  |
| 0.1%              | \$150.00                              | \$4,650.00                  | 100.0%           | \$2,325.00 0.1%                      | \$160.0                                                                         | 0 \$4,960.00                                    | 113.3%           | \$2,635.00 #REF!                         | \$200.00                  | \$6,200.00                                              | 166.7%               | \$3,875.00                  | 0.2%              | \$100.00                          | \$3,100.00                  | 33%          | \$775.00                    | 0.1%              | \$95.00                      | \$2,945.00                   | 27%           | \$620.00                    |
| 1.8%              | \$30,000.00<br>\$5,000.00             | \$30,000.00<br>\$5,000.00   | 130.8%<br>-50.0% | \$17,000.00 0.5%                     | \$ \$68,200.0<br>\$ \$2,575.0                                                   | 0 \$68,200.00<br>0 \$2,575.00                   | 424.6%           | \$55,200.00 #REF!<br>-\$7,425.00 #REF!   | \$55,000.00<br>\$1,500.00 | \$55,000.00<br>\$1,500.00                               | 323.1%<br>-85.0%     | \$42,000.00                 | 1.6%              | \$40,000.00<br>\$40,000.00        | \$40,000.00<br>\$40,000.00  | 208%         | \$27,000.00<br>\$30,000.00  | 1.0%              | \$400,000.00<br>\$100,000.00 | \$400,000.00<br>\$100,000.00 | 2977%<br>900% | \$387,000.00<br>\$90,000.00 |
| 0.5%              | \$17,000.00<br>\$3.00                 | \$17,000.00<br>\$1,350.00   | -5.6%            | -\$1,000.00 0.3%                     | \$ \$16,000.0                                                                   | 0 \$16,000.00<br>\$900.00                       | -11.1%           | -\$2,000.00 #REF!<br>\$450.00 #REF!      | \$60,000.00               | \$60,000.00                                             | 233.3%               | \$42,000.00                 | 1.8%              | \$55,000.00<br>\$3.00             | \$55,000.00<br>\$1,350.00   | 206%         | \$37,000.00                 | 1.4%              | \$50,000.00                  | \$50,000.00                  | 178%          | \$32,000.00                 |
| 1.4%              | \$5,500.00                            | \$44,000.00                 | 205.6%           | \$29,600.00 0.8%                     | \$ \$3,300.0                                                                    | 0 \$26,400.00                                   | 83.3%            | \$12,000.00 #REF!                        | \$3,500.00                | \$28,000.00                                             | 94.4%                | \$13,600.00                 | 0.8%              | \$3,000.00                        | \$24,000.00                 | 67%          | \$9,600.00                  | 0.6%              | \$6,225.00                   | \$49,800.00                  | 246%          | \$35,400.00                 |
| 0.1%              | \$1.00<br>\$70.00                     | \$2,500.00                  | 0.0%             | \$0.00 0.0%                          | 5 \$1.0<br>5 \$77.0                                                             | 0 \$2,500.00<br>0 \$1,155.00                    | 0.0%             | \$0.00 #REF!<br>\$630.00 #REF!           | \$1.00<br>\$80.00         | \$2,500.00                                              | 0 0.0%               | \$0.00                      | 0.1%              | \$1.00<br>\$90.00                 | \$2,500.00<br>\$1,350.00    | 0 0%         | \$0.00                      | 0.1%              | \$1.00<br>\$70.00            | \$2,500.00<br>\$1,050.00     | 100%          | \$0.00                      |
| 0.1%              | \$70.00<br>\$400.00                   | \$1,312.50                  | 75.0%            | \$562.50 0.0%                        | \$ \$70.0<br>\$ \$407.0                                                         | 0 \$1,312.50<br>\$2,442.00                      | 75.0%            | \$562.50 #REF!<br>\$1.392.00 #REF!       | \$70.00                   | \$1,312.50                                              | 75.0%                | \$562.50                    | 0.0%              | \$100.00<br>\$500.00              | \$1,875.00                  | 150%         | \$1,125.00                  | 0.0%              | \$63.00<br>\$370.00          | \$1,181.25                   | 58%<br>111%   | \$431.25<br>\$1 170.00      |
| 0.0%              | \$2,000.00                            | \$2,000.00                  | 66.7%            | \$800.00 0.0%                        | \$ \$1,375.0                                                                    | 0 \$1,375.00                                    | 14.6%            | \$175.00 #REF!                           | \$1,400.00                | \$1,400.00                                              | 16.7%                | \$200.00                    | 0.0%              | \$2,200.00                        | \$3,000.00                  | 83%          | \$1,000.00                  | 0.1%              | \$2,600.00                   | \$2,600.00                   | 117%          | \$1,400.00                  |
| 0.1%              | \$2,000.00<br>\$2,000.00              | \$2,000.00                  | 81.8%<br>81.8%   | \$900.00 0.0%<br>\$900.00 0.0%       | \$ \$1,158.0<br>\$ \$1,230.0                                                    | 0 \$1,158.00<br>0 \$1,230.00                    | 5.3%             | \$58.00 #REF!<br>\$130.00 #REF!          | \$1,650.00<br>\$2,250.00  | \$1,650.00<br>\$2,250.00                                | 0 50.0%<br>0 104.5%  | \$550.00<br>\$1,150.00      | 0.0%              | \$1,300.00<br>\$1,900.00          | \$1,300.00<br>\$1,900.00    | 18%          | \$200.00<br>\$800.00        | 0.0%              | \$2,800.00<br>\$3,220.00     | \$2,800.00<br>\$3,220.00     | 155%          | \$1,700.00<br>\$2,120.00    |
| 0.1%              | \$800.00                              | \$800.00                    | -20.0%           | -\$200.00 0.0%                       | \$ \$1,315.0<br>\$ \$110.0                                                      | 0 \$1,315.00<br>\$880.00                        | 31.5%            | \$315.00 #REF!                           | \$1,000.00                | \$1,000.00                                              | 0.0%                 | \$0.00                      | 0.0%              | \$450.00<br>\$450.00              | \$450.00                    | -55%         | -\$550.00                   | 0.0%              | \$3,220.00                   | \$3,220.00                   | 222%          | \$2,220.00                  |
| 0.1%              | \$500.00                              | \$1,000.00                  | 11.1%            | \$100.00 0.0%                        | \$ \$110.0                                                                      | 0 \$220.00                                      | -75.6%           | -\$680.00 #REF!                          | \$250.00                  | \$500.00                                                | -44.4%               | -\$400.00                   | 0.0%              | \$1,400.00                        | \$2,800.00                  | 211%         | \$1,900.00                  | 0.1%              | \$190.00                     | \$380.00                     | -58%          | -\$520.00                   |
| 0.1%              | \$1,500.00<br>\$3,000.00              | \$3,000.00<br>\$3,000.00    | -25.0%           | -\$1,000.00 0.1%<br>\$1,500.00 0.1%  | \$1,915.0<br>\$2,750.0                                                          | 0 \$3,830.00<br>0 \$2,750.00                    | -4.3%<br>83.3%   | -\$170.00 #REF!<br>\$1,250.00 #REF!      | \$4,000.00<br>\$4,000.00  | \$8,000.00<br>\$4,000.00                                | 100.0%<br>166.7%     | \$4,000.00                  | 0.2%              | \$1,350.00<br>\$4,000.00          | \$2,700.00<br>\$4,000.00    | -33%<br>167% | -\$1,300.00<br>\$2,500.00   | 0.1%              | \$3,500.00<br>\$3,500.00     | \$7,000.00<br>\$3,500.00     | 133%          | \$3,000.00<br>\$2,000.00    |
| 0.1%              | \$5,000.00                            | \$10,000.00                 | 233.3%           | \$7,000.00 0.2%                      | \$ \$2,805.0<br>\$ \$13,400.0                                                   | 0 \$5,610.00<br>\$26,800.00                     | 87.0%            | \$2,610.00 #REF!<br>\$11,800.00 #REF!    | \$6,000.00                | \$12,000.00                                             | 300.0%               | \$9,000.00                  | 0.4%              | \$9,000.00<br>\$700.00            | \$18,000.00                 | -91%         | \$15,000.00                 | 0.5%              | \$5,000.00<br>\$11.000.00    | \$10,000.00                  | 233%<br>47%   | \$7,000.00                  |
| 0.1%              | \$1,500.00                            | \$3,000.00                  | 76.5%            | \$1,300.00 0.1%                      | \$ \$800.0                                                                      | 0 \$1,600.00                                    | -5.9%            | -\$100.00 #REF!                          | \$1,200.00                | \$2,400.00                                              | 41.2%                | \$700.00                    | 0.1%              | \$700.00                          | \$1,400.00                  | -18%         | -\$300.00                   | 0.0%              | \$1,000.00                   | \$2,000.00                   | 18%           | \$300.00                    |
| 0.0%              | \$3.00<br>\$3.00                      | \$3,570.00<br>\$3,579.00    | 200.0%           | \$2,380.00 0.1%<br>\$2,386.00 0.1%   | \$2.0<br>\$ \$2.0                                                               | 0 \$2,380.00<br>\$2,386.00                      | 100.0%           | \$1,190.00 #REF!<br>\$1,193.00 #REF!     | \$1.85                    | \$2,201.50                                              | 85.0%<br>50.0%       | \$1,011.50<br>\$596.50      | 0.1%              | \$3.00<br>\$2.00                  | \$3,570.00                  | 200%         | \$2,380.00<br>\$1,193.00    | 0.1%              | \$2.00<br>\$1.00             | \$2,380.00<br>\$1,193.00     | 100%          | \$1,190.00                  |
| 3.3%              | \$1.00                                | \$127,000.00                | 0.0%             | \$0.00 2.2%                          | \$1.0                                                                           | 0 \$127,000.00<br>\$600.00                      | 0.0%             | \$0.00 #REF!                             | \$1.00                    | \$127,000.00                                            | 0.0%                 | \$0.00                      | 3.8%              | \$1.00                            | \$127,000.00                | 0%           | \$0.00                      | 3.3%              | \$1.00<br>\$1.00             | \$127,000.00                 | 0%            | \$0.00<br>\$0.00            |
| 0.0%              | \$1.00                                | \$250.00                    | 0.0%             | \$0.00 0.0%                          | \$1.0                                                                           | 0 \$250.00                                      | 0.0%             | \$0.00 #REF!                             | \$1.00                    | \$250.00                                                | 0.0%                 | \$0.00                      | 0.0%              | \$1.00                            | \$250.00                    | 0%           | \$0.00                      | 0.0%              | \$1.00                       | \$250.00                     | 0%            | \$0.00                      |
| 0.0%              | \$1.00<br>\$150,000.00                | \$100.00<br>\$150,000.00    | 0.0%             | \$0.00 0.0%<br>\$77,000.00 2.6%      | \$1.0<br>\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | \$100.00<br>\$127,950.00                        | 75.3%            | \$0.00 #REF!<br>\$54,950.00 #REF!        | \$1.00<br>\$160,000.00    | \$100.00<br>\$160,000.00                                | 0.0%                 | \$0.00<br>\$87,000.00       | 0.0%              | \$1.00<br>\$185,000.00            | \$100.00<br>\$185,000.00    | 153%         | \$0.00<br>\$112,000.00      | 0.0%<br>4.7%      | \$1.00<br>\$224,000.00       | \$100.00<br>\$224,000.00     | 207%          | \$0.00<br>\$151,000.00      |
| T                 | BASE BID TOTAL                        | \$3,874,000.00              |                  |                                      | BASE BID TOTA                                                                   | L \$3,904,485.50                                |                  |                                          | BASE BID TOTAL            | \$4,199,419.94                                          | - <u> </u>           |                             |                   | BASE BID TOTAL                    | \$4,924,333.00              |              |                             | T                 | BASE BID TOTAL               | \$5,840,455.75               |               |                             |



#### RESOLUTION AWARDING CONTRACT 2024-03 PIN 8701.43 - REPLACEMENT OF THE THEODORE FREMD AVENUE RETAINING WALL – TO ELQ INDUSTRIES, INC.

WHEREAS, a Project for the Replacement of the Theodore Fremd Avenue Retaining Wall along the Blind Brook (the "Project") was put out to bid; and

WHEREAS, City's engineering consultant, WSP, has reviewed and tabulated the bids received on October 3rd, 2024 for the above referenced project; and

WHEREAS, ELQ Industries, Inc. provided the lowest bid in the amount of \$3,212,873.60; and

WHEREAS, including \$600,000.00 for Construction Inspection & Support Services, the total project cost is estimated to be \$3,812,873.60; and

WHEREAS, the City Engineer has recommended that the bid be awarded to the lowest bidder, ELQ Industries, Inc. subject to review and approval of the Bid Award Package by the NYSDOT; and

NOW, THEREFORE, the Rye City Council, duly convened does hereby

RESOLVE, that the Rye City Council hereby awards Contract 2024-03 PIN 8701.43 – Replacement of the Theodore Fremd Avenue Retaining Wall Along the Blind Brook to ELQ Industries, Inc. in the amount of Three Million Two Hundred Twelve Thousand Eight Hundred Seventy Three Dollars and Sixty Cents (\$3,212,873.60)

BE IT FURTHER RESOLVED, that the City anticipates that it will be reimbursed for these costs partially by NYSDOT and the remaining costs can be covered through bond proceeds, capex reserve funds, or other sources of revenue such as State Touring Route funding and other state aid sources.

RESOLVED, this Resolution shall take effect immediately.

Motion made by:

Seconded by:
Vote:

Dated: Rye, New York

\_\_\_\_\_, 2024



### **CITY COUNCIL AGENDA**

DEPT.: City Planner

CONTACT: Christian Miller, City Planner

**AGENDA ITEM:** Presentation to the City Council on the comprehensive plan process.

FOR THE MEETING OF:

October 23, 2024

**RECOMMENDATION:** That the Council hear the presentation.

| IMPACT: | Environmental Fiscal Neighborhood Other: |
|---------|------------------------------------------|
|         |                                          |
|         |                                          |

### BACKGROUND:

The City Planner will present an overview of the comprehensive planning process and procedural options for the City Council's consideration to advance the preparation of a comprehensive plan for the City.



# **CITY COUNCIL AGENDA**

DEPT.: City Manager

CONTACT: Greg Usry, City Manager

**AGENDA ITEM:** Statement by the Rye City Council on gun safety in cooperation with the Rye School District.

FOR THE MEETING OF:

October 23, 2024

**RECOMMENDATION:** That the Council consider the joint statement.

| IMPACT: | 🗌 Environmental 🔲 Fiscal 🗌 Neighborhood 🛛 Other: |  |
|---------|--------------------------------------------------|--|
|         |                                                  |  |

**BACKGROUND:** See attached statement.



Joint Statement by The Rye City School District Board of Education and The Rye City Council

All students and members of our communities deserve to feel safe, welcomed, and included. It is on all of us to work together to prevent firearm violence and to avoid the harm and tragedy that shootings of any kind can cause in the spaces in which we live, learn, work, and play.

Safe firearm storage is one of many preventative actions that you can take in keeping our school community and school buildings and grounds safe. When firearms are stored safely, it can help prevent them from getting into the hands of children and teens, who may use them to, intentionally or unintentionally, harm themselves or others. Safe storage can go a long way in preventing lives from being lost or permanently altered. If you have firearms in your home or if your child spends time in a space where firearms are present, there are important steps that can be taken to keep firearms secured and out of reach of unintended users. It is important to note that <u>secure storage</u><sup>1</sup> is the law in New York. New York Penal Law § 265.45; New York Gen. Bus. Law § 396-ee; N.Y. Comp. Codes R. & Regs. tit. 9, § 471.1 et seq.

**Firearm-Related Injuries and Deaths: A Problem We Must Solve Together** Firearmrelated injuries and deaths are a public health crisis that communities across the nation face every day:

- Since 2018, there have been more than 100 school shooting incidents per year in our country and those numbers have steadily increased.<sup>2</sup>
- Approximately three-quarters of perpetrators in school-based active shooter situations acquired their firearm from the home of a parent or close relative.<sup>3</sup> This illustrates the close connection between your role as families, caregivers, and guardians and the role of the Rye City School District in keeping students safe while on school grounds.
- However, this issue goes beyond school-based active shooter situations and includes a variety of firearm injury types, including interpersonal violence, suicide, and unintentional fatal and nonfatal firearm injuries.<sup>4</sup>
- More than 4 million children live in a household with at least one unlocked and loaded firearm.<sup>5</sup> Studies have found that households with both locked firearms and locked ammunition have significantly lower risks of self-inflicted firearm injuries and even lower risks of unintentional firearm injuries among children and teens compared to households that did not safely store firearms.<sup>6</sup>

<sup>&</sup>lt;sup>1</sup> See also https://gunsafety.ny.gov/safe-storage-and-gun-safety; New York Gen. Bus. Law § 396-ee; N.Y. Comp. Codes R. & Regs. tit. 9, § 471.1 et seq.

<sup>&</sup>lt;sup>2</sup> Riedman, D. (2023). K-12 School Shooting Database. <u>https://k12ssdb.org/all-shootings</u>

<sup>&</sup>lt;sup>3</sup> National Threat Assessment Center. (2019). *Protecting America's Schools: A U.S. Secret Service Analysis of Targeted School Violence*. U.S. Secret Service, Department of Homeland Security. <u>http://bit.ly/3SfmSgw</u>

<sup>&</sup>lt;sup>4</sup> National Center for Injury Prevention and Control, Division of Violence Prevention. (September 19, 2023). Fast Facts: Firearm Violence and Injury Prevention. Centers for Disease Control and Prevention. <u>https://www.cdc.gov/violenceprevention/firearms/fastfact.html</u>

<sup>&</sup>lt;sup>5</sup> Miller, M., & Azrael, D. (2022). Firearm Storage in U.S. Households With Children: Findings From the 2021 National Firearm Survey, *JAMA Network Open, 5*(2): e2148823.

<sup>&</sup>lt;sup>6</sup> Grossman, D.C., Mueller, B.A., Riedy, C., Dowd, M.D., Villaveces, A., Prodzinski, J., Nakagawara, J., Howard, J., Thiersch, N., & Harruff, R. (2005). *Gun Storage Practices and Risk of Youth Suicide and Unintentional Firearm Injuries*. <u>https://jamanetwork.com/journals/jama/fullarticle/200330</u>.

#### Safe Firearm Storage: Actions to Take to Keep Our Communities Safe

Safe firearm storage can help prevent and minimize the risk of firearm-related deaths and injuries. Everyone, both firearm owners and non-owners, has a role to play in building awareness of safe, responsible firearm storage. Below are simple, highly effective practices that can help to reduce firearm-related incidents in our community and help protect our kids. In addition to these practices, it is important to also engage children and adolescents in conversations about the dangers associated with using firearms and what to do and not do in the event they access a firearm, to prevent fatal or non-fatal injuries.

- **Safely Store Firearms:** Store firearms—always unloaded—in a tamper proof locked cabinet, box, safe, firearm vault, or storage case that children or other unauthorized adults cannot access. The Rye City Police Department will provide you with a gun lock if you need one. They are available for pickup at the police station Monday through Friday between 8:00 a.m. and 4:00 p.m. or by calling 914-967-1234 to arrange a time.
- **Safely Store Ammunition:** Store ammunition in a <u>separate</u>, tamper-proof locked cabinet, safe, firearm vault, or storage case that children or other unauthorized adults cannot access.
- Secure Firearms: Use trigger locks or cable locks to prevent a firearm from firing. (More information can be found on the <u>Safe Firearm Storage Fact Sheet</u>, developed by the U.S. Department of Justice.)
  - o Trigger locks use a mechanism that clamps down around the trigger or trigger housing to prevent it from being pressed (*Note: trigger locks should not be installed on loaded firearms*).
  - o In a cable lock, a cable is threaded through the barrel or action of a firearm to prevent it from firing.

The Rye City School District and the City of Rye remain committed to helping ensure the safety of our students and community. We can all work together to promote awareness about how we can protect our children and our whole school communities by safely storing firearms and prevent tragedies from ever occurring. Thank you for being a partner in these efforts, and for helping reduce firearm-related injury and deaths in our community.<sup>7</sup>

<sup>&</sup>lt;sup>7</sup> Portions of and information contained in this letter were derived from *Be Smart for Kids* (<u>https://besmartforkids.org/</u>), the US Department of Education and their consultants.



# **CITY COUNCIL AGENDA**

DEPT.: City Manager

CONTACT: Greg Usry, City Manager

**AGENDA ITEM:** Resolution designating the days and times of regular meetings of the City Council for 2025 setting January 8, 2025, as the first regular meeting.

FOR THE MEETING OF:

October 23, 2024

**RECOMMENDATION:** That the Council approve the resolution.

RESOLVED the City Council approved the attached City Council meeting schedule for 2025 with the first regular meeting scheduled for January 8, 2025.

| IMPACT: | Environmental Fiscal Neighborhood Other: |
|---------|------------------------------------------|
|         |                                          |

**BACKGROUND:** The Rye City Charter stipulates that the City Council meet within the first two weeks of January in each year and shall hold stated meetings at least twice a month, except for the months of June through September when only one stated meeting per month need be held.

See attached calendar

### CITY COUNCIL SCHEDULE 2025

COUNCIL MEETING DATES

**BUDGET WORKSHOPS** 

JOINT CITY/SCHOOL BOARD MEETING

COUNCIL INAUGURATION

**CITY HOLIDAY** 

**SCHOOL BREAK** 

| JANUARY FEBRUARY               |                                 |                               |                               |                                |                          |                          |                               |                            |                                 | MARCH                    |                          |                               |                               |                                |                                      |                               |                                               | APRIL                    |                          |                          |                               |                                 |                                                                              |                                    | MAY                           |                                |                          |                              |                                 |                                |                                | JUNE                     |                          |                               |                               |                                      |                               |                                      |                          |                          |                          |
|--------------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------|--------------------------|-------------------------------|----------------------------|---------------------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------------|-------------------------------|-----------------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------|--------------------------|------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------|--------------------------|-------------------------------|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|
| S                              | Μ                               | Т                             | W                             | Т                              | F                        | S                        | S                             | Μ                          | Т                               | W                        | Т                        | F                             | S                             | $\mathbf{S}$                   | Μ                                    | Т                             | W                                             | Т                        | F                        | $\mathbf{S}$             | $\mathbf{S}$                  | Μ                               | Т                                                                            | W                                  | Т                             | F                              | S                        | $\mathbf{S}$                 | Μ                               | Т                              | W                              | Т                        | F                        | S                             | $\mathbf{S}$                  | M                                    | Т                             | W                                    | Т                        | F                        | S                        |
|                                |                                 |                               | 1                             | 2                              | 3                        | 4                        |                               |                            |                                 |                          |                          |                               | 1                             |                                |                                      |                               |                                               |                          |                          | 1                        |                               |                                 | 1                                                                            | 2                                  | 3                             | 4                              | 5                        |                              |                                 |                                |                                | 1                        | 2                        | 3                             |                               | 1                                    | 2                             | 3                                    | 4                        | 5                        | 6                        |
| 5                              | 6                               | 7                             | 8                             | 9                              | 10                       | 11                       | 2                             | 3                          | 4                               | 5                        | 6                        | 7                             | 8                             | 2                              | 3                                    | 4                             | 5                                             | 6                        | 7                        | 8                        | 6                             | 7                               | 8                                                                            | 9                                  | 10                            | 11                             | 12                       | 4                            | 5                               | 6                              | 7                              | 8                        | 9                        | 10                            | 7                             | 8                                    | 9                             | 10                                   | 11                       | 13                       | 14                       |
| 12                             | 13                              | 14                            | 15                            | 16                             | 17                       | 18                       | 9                             | 10                         | 11                              | 12                       | 13                       | 14                            | 15                            | 9                              | 10                                   | 11                            | 12                                            | 13                       | 14                       | 15                       | 13                            | 14                              | 15                                                                           | 16                                 | 17                            | 18                             | 19                       | 11                           | 12                              | 13                             | 14                             | 15                       | 16                       | 17                            | 15                            | 16                                   | 17                            | 18                                   | 19                       | 20                       | 21                       |
| 19                             | 20                              | 21                            | 22                            | 23                             | 24                       | 25                       | 16                            | 17                         | 18                              | 19                       | 20                       | 21                            | 22                            | 16                             | 17                                   | 18                            | 19                                            | 20                       | 21                       | 22                       | 20                            | 21                              | 22                                                                           | 23                                 | 24                            | 25                             | 26                       | 18                           | 19                              | 20                             | 21                             | 22                       | 23                       | 24                            | 22                            | 23                                   | 24                            | 25                                   | 26                       | 27                       | 28                       |
| 26                             | 27                              | 28                            | 29                            | 30                             | 31                       |                          | 23                            | 24                         | 25                              | 26                       | 27                       | 28                            |                               | 23                             | 24                                   | 25                            | 26                                            | 27                       | 28                       | 29                       | 27                            | 28                              | 29                                                                           | 30                                 |                               |                                |                          | 25                           | 26                              | 27                             | 28                             | 29                       | 30                       | 31                            | 29                            | 30                                   |                               |                                      |                          |                          |                          |
|                                |                                 |                               |                               |                                |                          |                          |                               |                            |                                 |                          |                          |                               |                               | 30                             | 31                                   |                               |                                               |                          |                          |                          |                               |                                 |                                                                              |                                    |                               |                                |                          |                              |                                 |                                |                                |                          |                          |                               |                               |                                      |                               |                                      |                          |                          |                          |
|                                |                                 |                               |                               |                                |                          |                          | AUGUST                        |                            |                                 |                          |                          |                               |                               |                                | SEPTEMBER                            |                               |                                               |                          |                          |                          |                               |                                 | OCTOBER                                                                      |                                    |                               |                                |                          |                              |                                 | NOVEMBER                       |                                |                          |                          |                               |                               | DECEMBER                             |                               |                                      |                          |                          |                          |
| JL                             | JLY                             |                               |                               |                                |                          |                          | Α                             | UGL                        | JST                             |                          |                          |                               |                               | SE                             | PTI                                  | EME                           | BER                                           |                          |                          |                          | 0                             | СТС                             | )BEI                                                                         | R                                  |                               |                                |                          | N                            | OVE                             | MB                             | ER                             |                          |                          |                               | D                             | ECE                                  | MB                            | ER                                   |                          |                          |                          |
| Jl<br>S                        | JLY<br>M                        | Т                             | W                             | Т                              | F                        | S                        | A<br>S                        | UGL<br>M                   | JST<br>T                        | W                        | Т                        | F                             | S                             | SE<br>S                        | PTI<br>M                             | EME<br>T                      | BER<br>W                                      | Т                        | F                        | S                        | 0<br>S                        | CTC<br>M                        | DBEI<br>T                                                                    | R<br>W                             | Т                             | F                              | S                        | N<br>S                       | OVE<br>M                        | T<br>T                         | ER<br>W                        | Т                        | F                        | S                             | D                             | ECE<br>M                             | T                             | ER<br>W                              | Т                        | F                        | S                        |
| Jl<br>S                        | JLY<br>M                        | T<br>1                        | W<br>2                        | T<br>3                         | F<br>4                   | S<br>5                   | A<br>S                        | UGL<br>M                   | JST<br>T                        | W                        | Т                        | F<br>1                        | S<br>2                        | SE<br>S                        | PTI<br>M<br>1                        | T<br>2                        | BER<br>W<br>3                                 | T<br>4                   | F<br>5                   | S<br>6                   | 0<br>S                        | CTC<br>M                        | DBEI<br>T                                                                    | R<br>W<br>1                        | T<br>2                        | F<br>3                         | S<br>4                   | N<br>S                       | OVE<br>M                        | т                              | ER<br>W                        | Т                        | F                        | S<br>1                        | D<br>S                        | ECE<br>M                             | T<br>2                        | ER<br>W<br>3                         | T<br>4                   | F<br>5                   | S<br>6                   |
| JL<br>S<br>6                   | JLY<br>M<br>7                   | T<br>1<br>8                   | W<br>2<br>9                   | T<br>3<br>10                   | F<br>4<br>11             | S<br>5<br>12             | A<br>S<br>3                   | UGU<br>M<br>4              | JST<br>T<br>5                   | W<br>6                   | T<br>7                   | F<br>1<br>8                   | S<br>2<br>9                   | SE<br>S                        | PTI<br>M<br>1<br>8                   | Т<br>2<br>9                   | 8ER<br>W<br>3<br>10                           | T<br>4<br>11             | F<br>5<br>12             | S<br>6<br>13             | 0<br>S<br>5                   | CTC<br>M<br>6                   | DBEI<br>T<br>7                                                               | R<br>W<br>1<br>8                   | T<br>2<br>9                   | F<br>3<br>10                   | S<br>4<br>11             | N<br>S<br>2                  | M<br>3                          | T<br>4                         | ER<br>W                        | T<br>6                   | F<br>7                   | S<br>1<br>8                   | D<br>S<br>7                   | ECE<br>M<br>1<br>8                   | Т<br>Т<br>2<br>9              | ER<br>W<br>3<br>10                   | T<br>4<br>11             | F<br>5<br>12             | S<br>6<br>13             |
| JU<br>S<br>6<br>13             | JLY<br>M<br>7<br>14             | T<br>1<br>8<br>15             | W<br>2<br>9<br>16             | T<br>3<br>10<br>17             | F<br>4<br>11<br>18       | S<br>5<br>12<br>19       | A<br>S<br>3<br>10             | UGU<br>M<br>4<br>11        | JST<br>T<br>5<br>12             | W<br>6<br>13             | T<br>7<br>14             | F<br>1<br>8<br>15             | S<br>2<br>9<br>16             | SE<br>S<br>7<br>14             | PTI<br>M<br>1<br>8<br>15             | T<br>2<br>9<br>16             | 8ER<br>3<br>10                                | T<br>4<br>11<br>18       | F<br>5<br>12<br>19       | S<br>6<br>13<br>20       | 0<br>S<br>5<br>12             | CTC<br>M<br>6<br>13             | В <b>ЕІ</b><br>Т<br>7<br>14                                                  | R<br>W<br>1<br>8<br>15             | T<br>2<br>9<br>16             | F<br>3<br>10<br>17             | S<br>4<br>11<br>18       | N<br>S<br>2<br>9             | OVE<br>M<br>3<br>10             | Т<br>4<br>11                   | ER<br>W<br>5<br>12             | T<br>6<br>13             | F<br>7<br>14             | S<br>1<br>8<br>15             | D<br>S<br>7<br>14             | ECE<br>M<br>1<br>8<br>15             | T<br>2<br>9<br>16             | ER<br>W<br>3<br>10                   | T<br>4<br>11<br>18       | F<br>5<br>12<br>19       | S<br>6<br>13<br>20       |
| JU<br>S<br>6<br>13<br>20       | JLY<br>M<br>7<br>14<br>21       | T<br>1<br>8<br>15<br>22       | W<br>2<br>9<br>16<br>23       | T<br>3<br>10<br>17<br>24       | F<br>4<br>11<br>18<br>25 | S<br>5<br>12<br>19<br>26 | A<br>S<br>3<br>10<br>17       | UGU<br>M<br>4<br>11<br>18  | JST<br>T<br>5<br>12<br>19       | W<br>6<br>13<br>20       | T<br>7<br>14<br>21       | F<br>1<br>8<br>15<br>22       | S<br>2<br>9<br>16<br>23       | SE<br>S<br>7<br>14<br>21       | PTI<br>M<br>1<br>8<br>15<br>22       | T<br>2<br>9<br>16<br>23       | <b>BER</b><br>W<br>3<br>10<br><b>17</b><br>24 | T<br>4<br>11<br>18<br>25 | F<br>5<br>12<br>19<br>26 | S<br>6<br>13<br>20<br>27 | 0<br>S<br>5<br>12<br>19       | CTC<br>M<br>6<br>13<br>20       | <ul> <li><b>BEI</b></li> <li>T</li> <li>7</li> <li>14</li> <li>21</li> </ul> | R<br>W<br>1<br>8<br>15<br>22       | T<br>2<br>9<br>16<br>23       | F<br>3<br>10<br>17<br>24       | S<br>4<br>11<br>18<br>25 | N<br>S<br>2<br>9<br>16       | OVE<br>M<br>3<br>10<br>17       | T<br>4<br>11<br>18             | ER<br>W<br>5<br>12<br>19       | T<br>6<br>13<br>20       | F<br>7<br>14<br>21       | S<br>1<br>8<br>15<br>22       | D<br>S<br>7<br>14<br>21       | ECE<br>M<br>1<br>8<br>15<br>22       | T<br>2<br>9<br>16<br>23       | ER<br>W<br>3<br>10<br>17<br>24       | T<br>4<br>11<br>18<br>25 | F<br>5<br>12<br>19<br>26 | S<br>6<br>13<br>20<br>27 |
| JU<br>S<br>6<br>13<br>20<br>27 | JLY<br>M<br>7<br>14<br>21<br>28 | T<br>1<br>8<br>15<br>22<br>29 | W<br>2<br>9<br>16<br>23<br>30 | T<br>3<br>10<br>17<br>24<br>31 | F<br>4<br>11<br>18<br>25 | S<br>5<br>12<br>19<br>26 | A<br>S<br>3<br>10<br>17<br>24 | UGU<br>4<br>11<br>18<br>25 | JST<br>T<br>5<br>12<br>19<br>26 | W<br>6<br>13<br>20<br>27 | T<br>7<br>14<br>21<br>28 | F<br>1<br>8<br>15<br>22<br>29 | S<br>2<br>9<br>16<br>23<br>30 | SE<br>S<br>7<br>14<br>21<br>28 | PTI<br>M<br>1<br>8<br>15<br>22<br>29 | T<br>2<br>9<br>16<br>23<br>30 | BER<br>W<br>3<br>10<br>17<br>24               | T<br>4<br>11<br>18<br>25 | F<br>5<br>12<br>19<br>26 | S<br>6<br>13<br>20<br>27 | 0<br>S<br>5<br>12<br>19<br>26 | CTC<br>M<br>6<br>13<br>20<br>27 | DBEI<br>T<br>7<br>14<br>21<br>28                                             | R<br>W<br>1<br>8<br>15<br>22<br>29 | T<br>2<br>9<br>16<br>23<br>30 | F<br>3<br>10<br>17<br>24<br>31 | S<br>4<br>11<br>18<br>25 | N<br>S<br>2<br>9<br>16<br>23 | OVE<br>M<br>3<br>10<br>17<br>24 | MB<br>T<br>4<br>11<br>18<br>25 | ER<br>W<br>5<br>12<br>19<br>26 | T<br>6<br>13<br>20<br>27 | F<br>7<br>14<br>21<br>28 | S<br>1<br>8<br>15<br>22<br>29 | D<br>S<br>7<br>14<br>21<br>28 | ECE<br>M<br>1<br>8<br>15<br>22<br>29 | T<br>2<br>9<br>16<br>23<br>30 | ER<br>W<br>3<br>10<br>17<br>24<br>31 | T<br>4<br>11<br>18<br>25 | F<br>5<br>12<br>19<br>26 | S<br>6<br>13<br>20<br>27 |

\*The Joint City Council/School Board meeting date is tentative and may be rescheduled.